The -index of inclusion as optimal adjoint pair for fuzzy modus ponens
Abstract
We continue studying the properties of the f-index of inclusion and show that, given a fixed pair of fuzzy sets, their f-index of inclusion can be linked to a fuzzy conjunction which is part of an adjoint pair. We also show that, when this pair is used as the underlying structure to provide a fuzzy interpretation of the modus ponens inference rule, it provides the maximum possible truth-value in the conclusion among all those values obtained by fuzzy modus ponens using any other possible adjoint pair.
Citation
Please, cite this work as:
[MO23] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets Syst. 466 (2023), p. 108474. DOI: 10.1016/J.FSS.2023.01.009. URL: https://doi.org/10.1016/j.fss.2023.01.009.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] C. Díaz-Montarroso, N. Madrid, and E. Ramírez-Poussa. “Towards a Generalized Modus Ponens Based on the -Index of Inclusion”. In: Conceptual Knowledge Structures. Springer Nature Switzerland, 2024, p. 36–48. ISBN: 9783031678684. DOI: 10.1007/978-3-031-67868-4_3. URL: http://dx.doi.org/10.1007/978-3-031-67868-4_3.
[2] J. Dombi and T. Jónás. “Approximate reasoning based on the preference implication”. In: Fuzzy Sets and Systems 499 (Jan. 2025), p. 109187. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109187. URL: http://dx.doi.org/10.1016/j.fss.2024.109187.
[3] T. Flaminio, L. Godo, N. Madrid, et al. “A Logic to Reason About f-Indices of Inclusion over Ł”. In: Fuzzy Logic and Technology, and Aggregation Operators. Springer Nature Switzerland, 2023, p. 530–539. ISBN: 9783031399657. DOI: 10.1007/978-3-031-39965-7_44. URL: http://dx.doi.org/10.1007/978-3-031-39965-7_44.
[4] N. Madrid, M. Ojeda‐Aciego, and E. Ramírez‐Poussa. “On the φ‐Index of Inclusion: Studying the Structure Generated by a Subset of Indexes”. In: Mathematical Methods in the Applied Sciences (Feb. 2025). ISSN: 1099-1476. DOI: 10.1002/mma.10833. URL: http://dx.doi.org/10.1002/mma.10833.
[5] N. Madrid and E. Ramírez-Poussa. “Analysis of the -Index of Inclusion Restricted to a Set of Indexes”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer Nature Switzerland, 2024, p. 3–11. ISBN: 9783031740039. DOI: 10.1007/978-3-031-74003-9_1. URL: http://dx.doi.org/10.1007/978-3-031-74003-9_1.