Counting semicopulas on finite structures

Authors
Published

1 January 2023

Publication details

Fuzzy Sets Syst. vol. 462 , pages 108405.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[BO23] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets Syst. 462 (2023), p. 108405. DOI: 10.1016/J.FSS.2022.09.011. URL: https://doi.org/10.1016/j.fss.2022.09.011.

@Article{Bejines2023,
     author = {Carlos Bejines and Manuel Ojeda-Hern{’a}ndez},
     journal = {Fuzzy Sets Syst.},
     title = {Counting semicopulas on finite structures},
     year = {2023},
     pages = {108405},
     volume = {462},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/BejinesO23.bib},
     doi = {10.1016/J.FSS.2022.09.011},
     timestamp = {Thu, 15 Jun 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2022.09.011},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

Counting semicopulas on finite structures

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202420230.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.

[2] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A study on the cardinality of some families of discrete operators through alternating sign matrices”. In: Information Sciences 639 (Aug. 2023), p. 118571. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.01.040. URL: http://dx.doi.org/10.1016/j.ins.2023.01.040.

[3] M. Munar, A. Mir, S. Massanet, et al. “An analysis of the asymptotic behavior of the cardinality of some classes of logical connectives and aggregation functions defined on finite chains”. In: Computational and Applied Mathematics 44.5 (Apr. 2025). ISSN: 1807-0302. DOI: 10.1007/s40314-025-03136-8. URL: http://dx.doi.org/10.1007/s40314-025-03136-8.