Counting semicopulas on finite structures

uncategorised
Authors
Published

1 January 2023

Publication details

Fuzzy Sets Syst. vol. 462 , pages 108405.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[BO23] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets Syst. 462 (2023), p. 108405. DOI: 10.1016/J.FSS.2022.09.011. URL: https://doi.org/10.1016/j.fss.2022.09.011.

@Article{Bejines2023,
     author = {Carlos Bejines and Manuel Ojeda-Hern{’a}ndez},
     journal = {Fuzzy Sets Syst.},
     title = {Counting semicopulas on finite structures},
     year = {2023},
     pages = {108405},
     volume = {462},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/BejinesO23.bib},
     doi = {10.1016/J.FSS.2022.09.011},
     timestamp = {Thu, 15 Jun 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2022.09.011},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 2
  • Captures
  • Mendeley - Readers: 3

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202420230.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.

[2] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A study on the cardinality of some families of discrete operators through alternating sign matrices”. In: Information Sciences 639 (Aug. 2023), p. 118571. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.01.040. URL: http://dx.doi.org/10.1016/j.ins.2023.01.040.

[3] M. Munar, A. Mir, S. Massanet, et al. “An analysis of the asymptotic behavior of the cardinality of some classes of logical connectives and aggregation functions defined on finite chains”. In: Computational and Applied Mathematics 44.5 (Apr. 2025). ISSN: 1807-0302. DOI: 10.1007/s40314-025-03136-8. URL: http://dx.doi.org/10.1007/s40314-025-03136-8.