Counting semicopulas on finite structures
Abstract
Citation
Please, cite this work as:
[BO23] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets Syst. 462 (2023), p. 108405. DOI: 10.1016/J.FSS.2022.09.011. URL: https://doi.org/10.1016/j.fss.2022.09.011.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.
[2] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A study on the cardinality of some families of discrete operators through alternating sign matrices”. In: Information Sciences 639 (Aug. 2023), p. 118571. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.01.040. URL: http://dx.doi.org/10.1016/j.ins.2023.01.040.
[3] M. Munar, A. Mir, S. Massanet, et al. “An analysis of the asymptotic behavior of the cardinality of some classes of logical connectives and aggregation functions defined on finite chains”. In: Computational and Applied Mathematics 44.5 (Apr. 2025). ISSN: 1807-0302. DOI: 10.1007/s40314-025-03136-8. URL: http://dx.doi.org/10.1007/s40314-025-03136-8.