The Fibonacci sequence in the description of maximal discrete Archimedean t-norms

uncategorised
Authors

Carlos Bejines

Mirko Navara

Published

1 January 2022

Publication details

Fuzzy Sets Syst. vol. 451 , pages 94–112.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[BN22] C. Bejines and M. Navara. “The Fibonacci sequence in the description of maximal discrete Archimedean t-norms”. In: Fuzzy Sets Syst. 451 (2022), pp. 94-112. DOI: 10.1016/J.FSS.2022.08.012. URL: https://doi.org/10.1016/j.fss.2022.08.012.

@Article{Bejines2022b,
     author = {Carlos Bejines and Mirko Navara},
     journal = {Fuzzy Sets Syst.},
     title = {The Fibonacci sequence in the description of maximal discrete Archimedean t-norms},
     year = {2022},
     pages = {94–112},
     volume = {451},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/BejinesN22.bib},
     doi = {10.1016/J.FSS.2022.08.012},
     timestamp = {Sun, 15 Jan 2023 00:00:00 +0100},
     url = {https://doi.org/10.1016/j.fss.2022.08.012},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 5
  • Captures
  • Mendeley - Readers: 4

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20252024202320220.00.51.01.52.0
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets and Systems 462 (Jun. 2023), p. 108405. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.09.011. URL: http://dx.doi.org/10.1016/j.fss.2022.09.011.

[2] V. Keerthana, B. Baranidharan, and G. S. Mahapatra. “Encoding Residuation Principle and Representation Theorem Under Pythagorean Fuzzy Using Triangular Norm and Conorm”. In: International Journal of Fuzzy Systems (Feb. 2025). ISSN: 2199-3211. DOI: 10.1007/s40815-024-01913-x. URL: http://dx.doi.org/10.1007/s40815-024-01913-x.

[3] M. R. Khan, K. Ullah, and Q. Khan. “Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment”. In: Reports in Mechanical Engineering 4.1 (Dec. 2023), p. 18–38. ISSN: 2683-5894. DOI: 10.31181/rme20031012023k. URL: http://dx.doi.org/10.31181/rme20031012023k.

[4] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.

[5] J. Qiao. “Quasi-D-overlap functions: Construction and characterization”. In: Fuzzy Sets and Systems 498 (Jan. 2025), p. 109138. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109138. URL: http://dx.doi.org/10.1016/j.fss.2024.109138.