The number of t-norms on some special lattices
Abstract
Citation
Please, cite this work as:
[Bej+21] C. Bejines, M. Brutenicová, M. Chasco, et al. “The number of t-norms on some special lattices”. In: Fuzzy Sets Syst. 408 (2021), pp. 26-43. DOI: 10.1016/J.FSS.2020.03.014. URL: https://doi.org/10.1016/j.fss.2020.03.014.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] C. Bejines. “T-norms and t-conorms on a family of lattices”. In: Fuzzy Sets and Systems 439 (Jul. 2022), p. 55–74. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.05.008. URL: http://dx.doi.org/10.1016/j.fss.2021.05.008.
[2] C. Bejines and M. Navara. “The Fibonacci sequence in the description of maximal discrete Archimedean t-norms”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 94–112. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.08.012. URL: http://dx.doi.org/10.1016/j.fss.2022.08.012.
[3] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets and Systems 462 (Jun. 2023), p. 108405. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.09.011. URL: http://dx.doi.org/10.1016/j.fss.2022.09.011.
[4] S. Karmakar and S. K. De. “A study of an EOQ model where the demand depends on time and varying number of tourists using fuzzy triangular norms”. In: Journal of Ambient Intelligence and Humanized Computing 14.10 (Apr. 2022), p. 13543–13558. ISSN: 1868-5145. DOI: 10.1007/s12652-022-03821-0. URL: http://dx.doi.org/10.1007/s12652-022-03821-0.
[5] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.
[6] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A review on logical connectives defined on finite chains”. In: Fuzzy Sets and Systems 462 (Jun. 2023), p. 108469. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.004. URL: http://dx.doi.org/10.1016/j.fss.2023.01.004.
[7] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A study on the cardinality of some families of discrete operators through alternating sign matrices”. In: Information Sciences 639 (Aug. 2023), p. 118571. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.01.040. URL: http://dx.doi.org/10.1016/j.ins.2023.01.040.
[8] F. Pérez-Gámez and C. Bejines. “An exploration of weak Heyting algebras: Characterization and properties”. In: International Journal of Approximate Reasoning 179 (Apr. 2025), p. 109365. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2025.109365. URL: http://dx.doi.org/10.1016/j.ijar.2025.109365.
[9] J. Qiao. “Constructions of quasi-overlap functions and their generalized forms on bounded partially ordered sets”. In: Fuzzy Sets and Systems 446 (Oct. 2022), p. 68–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.03.004. URL: http://dx.doi.org/10.1016/j.fss.2021.03.004.