The number of t-norms on some special lattices

uncategorised
Authors

Carlos Bejines

Michaela Brutenicová

María Jesús Chasco

Jorge Elorza

Vladimír Janis

Published

1 January 2021

Publication details

Fuzzy Sets Syst. vol. 408 , pages 26–43.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Bej+21] C. Bejines, M. Brutenicová, M. Chasco, et al. “The number of t-norms on some special lattices”. In: Fuzzy Sets Syst. 408 (2021), pp. 26-43. DOI: 10.1016/J.FSS.2020.03.014. URL: https://doi.org/10.1016/j.fss.2020.03.014.

@Article{Bejines2021a,
     author = {Carlos Bejines and Michaela Brutenicov{’a} and Mar'Jes{’u}s Chasco and Jorge Elorza and Vladim'Janis},
     journal = {Fuzzy Sets Syst.},
     title = {The number of t-norms on some special lattices},
     year = {2021},
     pages = {26–43},
     volume = {408},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/BejinesBCEJ21.bib},
     doi = {10.1016/J.FSS.2020.03.014},
     timestamp = {Sat, 30 Sep 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2020.03.014},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • Scopus - Citation Indexes: 9
  • Captures
  • Mendeley - Readers: 4

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202520242023202220210123
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] C. Bejines. “T-norms and t-conorms on a family of lattices”. In: Fuzzy Sets and Systems 439 (Jul. 2022), p. 55–74. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.05.008. URL: http://dx.doi.org/10.1016/j.fss.2021.05.008.

[2] C. Bejines and M. Navara. “The Fibonacci sequence in the description of maximal discrete Archimedean t-norms”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 94–112. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.08.012. URL: http://dx.doi.org/10.1016/j.fss.2022.08.012.

[3] C. Bejines and M. Ojeda-Hernández. “Counting semicopulas on finite structures”. In: Fuzzy Sets and Systems 462 (Jun. 2023), p. 108405. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.09.011. URL: http://dx.doi.org/10.1016/j.fss.2022.09.011.

[4] S. Karmakar and S. K. De. “A study of an EOQ model where the demand depends on time and varying number of tourists using fuzzy triangular norms”. In: Journal of Ambient Intelligence and Humanized Computing 14.10 (Apr. 2022), p. 13543–13558. ISSN: 1868-5145. DOI: 10.1007/s12652-022-03821-0. URL: http://dx.doi.org/10.1007/s12652-022-03821-0.

[5] M. Munar, M. Couceiro, S. Massanet, et al. “A survey on the enumeration of classes of logical connectives and aggregation functions defined on a finite chain, with new results”. In: Fuzzy Sets and Systems 490 (Aug. 2024), p. 109023. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109023. URL: http://dx.doi.org/10.1016/j.fss.2024.109023.

[6] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A review on logical connectives defined on finite chains”. In: Fuzzy Sets and Systems 462 (Jun. 2023), p. 108469. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.004. URL: http://dx.doi.org/10.1016/j.fss.2023.01.004.

[7] M. Munar, S. Massanet, and D. Ruiz-Aguilera. “A study on the cardinality of some families of discrete operators through alternating sign matrices”. In: Information Sciences 639 (Aug. 2023), p. 118571. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.01.040. URL: http://dx.doi.org/10.1016/j.ins.2023.01.040.

[8] F. Pérez-Gámez and C. Bejines. “An exploration of weak Heyting algebras: Characterization and properties”. In: International Journal of Approximate Reasoning 179 (Apr. 2025), p. 109365. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2025.109365. URL: http://dx.doi.org/10.1016/j.ijar.2025.109365.

[9] J. Qiao. “Constructions of quasi-overlap functions and their generalized forms on bounded partially ordered sets”. In: Fuzzy Sets and Systems 446 (Oct. 2022), p. 68–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.03.004. URL: http://dx.doi.org/10.1016/j.fss.2021.03.004.