Formal concept analysis with negative attributes for forgery detection
Abstract
Citation
Please, cite this work as:
[OR21] M. Ojeda-Aciego and J. M. Rodr'-Jiménez. “Formal concept analysis with negative attributes for forgery detection”. In: Comput. Math. Methods 3.6 (2021). DOI: 10.1002/CMM4.1124. URL: https://doi.org/10.1002/cmm4.1124.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] C. Devlin, M. Morelato, and S. Baechler. “Forensic intelligence: Expanding the potential of forensic document examination”. In: WIREs Forensic Science 6.5 (Jul. 2024). ISSN: 2573-9468. DOI: 10.1002/wfs2.1528. URL: http://dx.doi.org/10.1002/wfs2.1528.
[2] M. Ojeda-Aciego and J. M. Rodríguez-Jiménez. “Advances in Forgery Detection of Driving Licences Using Truthfulness Degrees”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 4. Springer International Publishing, Sep. 2022, p. 145–151. ISBN: 9783031077074. DOI: 10.1007/978-3-031-07707-4_18. URL: http://dx.doi.org/10.1007/978-3-031-07707-4_18.
[3] J. M. Rodríguez Jiménez, M. Á. Canorea Ruiz, and A. Plaza Quesada. “Detección de alteración de motores ubicados en motocicletas”. In: Ciencia Policial 183 (Dec. 2024), p. 15–41. ISSN: 2254-0326. DOI: 10.14201/cp.32162. URL: http://dx.doi.org/10.14201/cp.32162.
[4] P. Sokol, Ľ. Antoni, O. Krídlo, et al. “Formal concept analysis approach to understand digital evidence relationships”. In: International Journal of Approximate Reasoning 159 (Aug. 2023), p. 108940. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2023.108940. URL: http://dx.doi.org/10.1016/j.ijar.2023.108940.