Parameterized simplification logic I: reasoning with implications and classes of closure operators

Simplification logic
Authors
Published

6 August 2020

Publication details

International Journal of General Systems vol 49 (7), pp. 724 – 746

Links

DOI

 

Abstract

In this paper, we present a general inference system for reasoning with if-then rules. They are defined using general lattice-theoretic notions and their semantics is defined using particular closure operators parameterized by systems of isotone Galois connections. In this general setting, we introduce a simplification logic, show its sound and complete axiomatization, and deal with related issues. The presented results can be seen as forming parameterized framework for dealing with if-then rules that allows to focus on particular dependencies obtained by choices of parameterizations.

Citation

Please, cite this work as:

[PV20] A. M. Pablo Cordero Manuel Enciso and V. Vychodil. “Parameterized simplification logic I: reasoning with implications and classes of closure operators”. In: International Journal of General Systems 49.7 (2020), pp. 724-746. DOI: 10.1080/03081079.2020.1831484. eprint:

https://doi.org/10.1080/03081079.2020.1831484

. URL: [

https://doi.org/10.1080/03081079.2020.1831484

](

https://doi.org/10.1080/03081079.2020.1831484

).

@article{doi:10.1080/03081079.2020.1831484,
    author = {Pablo Cordero, Manuel Enciso, Angel Mora and Vilem Vychodil},
    title = {Parameterized simplification logic I: reasoning with implications and classes of closure operators},
    journal = {International Journal of General Systems},
    volume = {49},
    number = {7},
    pages = {724-746},
    year = {2020},
    publisher = {Taylor & Francis},
    doi = {10.1080/03081079.2020.1831484},
    
    
    URL = {
    
     https://doi.org/10.1080/03081079.2020.1831484
    
    
    
    },
    eprint = {
    
     https://doi.org/10.1080/03081079.2020.1831484
    
    
    
    }
    
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 2
  • Scopus - Citation Indexes: 12
  • Captures
  • Mendeley - Readers: 6

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

2024202320222021012345
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] R. G. Aragón, M. Eugenia Cornejo, J. Medina, et al. “A Formal Method for Driver Identification”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 4. Springer International Publishing, Sep. 2022, p. 153–159. ISBN: 9783031077074. DOI: 10.1007/978-3-031-07707-4_19. URL: http://dx.doi.org/10.1007/978-3-031-07707-4_19.

[2] R. G. Aragón, J. Medina, and E. Ramírez-Poussa. “Identifying Non-Sublattice Equivalence Classes Induced by an Attribute Reduction in FCA”. In: Mathematics 9.5 (Mar. 2021), p. 565. ISSN: 2227-7390. DOI: 10.3390/math9050565. URL: http://dx.doi.org/10.3390/math9050565.

[3] P. Cordero, M. Enciso, A. Mora, et al. “Parameterized Simplification Logic: Reasoning With Implications in an Automated Way”. In: IEEE Transactions on Fuzzy Systems 30.12 (Dec. 2022), p. 5534–5543. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2022.3179847. URL: http://dx.doi.org/10.1109/tfuzz.2022.3179847.

[4] M. E. Cornejo, J. C. Díaz-Moreno, and J. Medina. “Generalized quantifiers in formal concept analysis”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113772. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113772. URL: http://dx.doi.org/10.1016/j.cam.2021.113772.

[5] M. E. Cornejo, J. Medina, and F. J. Ocaña. “Attribute implications in multi-adjoint concept lattices with hedges”. In: Fuzzy Sets and Systems 479 (Mar. 2024), p. 108854. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.108854. URL: http://dx.doi.org/10.1016/j.fss.2023.108854.

[6] M. Nesibe Kesicioğlu and E. Kürkçü Çakar. “Closure operators constructed by logical operations on bounded lattices”. In: Fuzzy Sets and Systems 484 (May. 2024), p. 108945. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.108945. URL: http://dx.doi.org/10.1016/j.fss.2024.108945.

[7] M. Ojeda-Hernández, I. P. Cabrera, and P. Cordero. “Quasi-closed elements in fuzzy posets”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113390. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113390. URL: http://dx.doi.org/10.1016/j.cam.2021.113390.

[8] M. Ojeda-Hernandez, I. P. Cabrera, P. Cordero, et al. “On (fuzzy) closure systems in complete fuzzy lattices”. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2021, p. 1–6. DOI: 10.1109/fuzz45933.2021.9494404. URL: http://dx.doi.org/10.1109/fuzz45933.2021.9494404.

[9] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Closure Systems as a Fuzzy Extension of Meet-subsemilattices”. In: Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP). ifsa-eusflat-agop-21. Atlantis Press, 2021. DOI: 10.2991/asum.k.210827.006. URL: http://dx.doi.org/10.2991/asum.k.210827.006.

[10] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Fuzzy closure relations”. In: Fuzzy Sets and Systems 450 (Dec. 2022), p. 118–132. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.016. URL: http://dx.doi.org/10.1016/j.fss.2022.05.016.

[11] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Fuzzy closure systems: Motivation, definition and properties”. In: International Journal of Approximate Reasoning 148 (Sep. 2022), p. 151–161. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2022.06.004. URL: http://dx.doi.org/10.1016/j.ijar.2022.06.004.

[12] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Relational Extension of Closure Structures”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 77–86. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_7. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_7.

[13] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Simplification logic for the management of unknown information”. In: Information Sciences 634 (Jul. 2023), p. 505–519. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.03.015. URL: http://dx.doi.org/10.1016/j.ins.2023.03.015.