Functional degrees of inclusion and similarity between -fuzzy sets

uncategorised
Authors

Nicolás Madrid

Manuel Ojeda-Aciego

Published

1 January 2020

Publication details

Fuzzy Sets Syst. vol. 390 , pages 1–22.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[MO20] N. Madrid and M. Ojeda-Aciego. “Functional degrees of inclusion and similarity between L-fuzzy sets”. In: Fuzzy Sets Syst. 390 (2020), pp. 1-22. DOI: 10.1016/J.FSS.2019.03.018. URL: https://doi.org/10.1016/j.fss.2019.03.018.

@Article{Madrid2020,
     author = {Nicol{’a}s Madrid and Manuel Ojeda-Aciego},
     journal = {Fuzzy Sets Syst.},
     title = {Functional degrees of inclusion and similarity between -fuzzy sets},
     year = {2020},
     pages = {1–22},
     volume = {390},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/MadridO20.bib},
     doi = {10.1016/J.FSS.2019.03.018},
     timestamp = {Tue, 16 Jun 2020 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2019.03.018},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • Scopus - Citation Indexes: 16
  • Captures
  • Mendeley - Readers: 5

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20252024202320222021202001234
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] C. Díaz-Montarroso, N. Madrid, and E. Ramírez-Poussa. “Towards a Generalized Modus Ponens Based on the φ\varphi -Index of Inclusion”. In: Conceptual Knowledge Structures. Springer Nature Switzerland, 2024, p. 36–48. ISBN: 9783031678684. DOI: 10.1007/978-3-031-67868-4_3. URL: http://dx.doi.org/10.1007/978-3-031-67868-4_3.

[2] J. Dombi and T. Jónás. “Approximate reasoning based on the preference implication”. In: Fuzzy Sets and Systems 499 (Jan. 2025), p. 109187. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109187. URL: http://dx.doi.org/10.1016/j.fss.2024.109187.

[3] T. Flaminio, L. Godo, N. Madrid, et al. “A Logic to Reason About f-Indices of Inclusion over Łn_n”. In: Fuzzy Logic and Technology, and Aggregation Operators. Springer Nature Switzerland, 2023, p. 530–539. ISBN: 9783031399657. DOI: 10.1007/978-3-031-39965-7_44. URL: http://dx.doi.org/10.1007/978-3-031-39965-7_44.

[4] N. Madrid and C. Cornelis. “Kitainik axioms do not characterize the class of inclusion measures based on contrapositive fuzzy implications”. In: Fuzzy Sets and Systems 456 (Mar. 2023), p. 208–214. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.010. URL: http://dx.doi.org/10.1016/j.fss.2022.05.010.

[5] N. Madrid and M. Ojeda-Aciego. “Approaching the square of opposition in terms of the f-indexes of inclusion and contradiction”. In: Fuzzy Sets and Systems 476 (Jan. 2024), p. 108769. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.108769. URL: http://dx.doi.org/10.1016/j.fss.2023.108769.

[6] N. Madrid and M. Ojeda-Aciego. “Approaching the Square of Oppositions in Terms of the f -indexes of Inclusion and Contradiction”. In: Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP). ifsa-eusflat-agop-21. Atlantis Press, 2021. DOI: 10.2991/asum.k.210827.055. URL: http://dx.doi.org/10.2991/asum.k.210827.055.

[7] N. Madrid and M. Ojeda-Aciego. “Measures of inclusion and entropy based on the φ-index of inclusion”. In: Fuzzy Sets and Systems 423 (Oct. 2021), p. 29–54. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.01.011. URL: http://dx.doi.org/10.1016/j.fss.2021.01.011.

[8] N. Madrid and M. Ojeda-Aciego. “On Contradiction and Inclusion Using Functional Degrees”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 464. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200409.001. URL: http://dx.doi.org/10.2991/ijcis.d.200409.001.

[9] N. Madrid and M. Ojeda-Aciego. “Some Relationships Between the Notions of f-Inclusion and f-Contradiction”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 175–181. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_20. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_20.

[10] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.

[11] N. Madrid, M. Ojeda‐Aciego, and E. Ramírez‐Poussa. “On the φφ \varphi ‐Index of Inclusion: Studying the Structure Generated by a Subset of Indexes”. In: Mathematical Methods in the Applied Sciences (Feb. 2025). ISSN: 1099-1476. DOI: 10.1002/mma.10833. URL: http://dx.doi.org/10.1002/mma.10833.

[12] N. Madrid and E. Ramírez-Poussa. “Analysis of the φ\varphi -Index of Inclusion Restricted to a Set of Indexes”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer Nature Switzerland, 2024, p. 3–11. ISBN: 9783031740039. DOI: 10.1007/978-3-031-74003-9_1. URL: http://dx.doi.org/10.1007/978-3-031-74003-9_1.

[13] Z. Peng and X. Zhang. “A New Similarity Measure of Hesitant Fuzzy Sets and Its Application”. In: International Journal of Fuzzy Systems (Sep. 2024). ISSN: 2199-3211. DOI: 10.1007/s40815-024-01857-2. URL: http://dx.doi.org/10.1007/s40815-024-01857-2.

[14] S. Porębski. “Selection of T-Norms for Calculating Belief Measure and Their Influence on Support Decision with Uncertainty”. In: Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives. Springer International Publishing, 2022, p. 229–240. ISBN: 9783030959296. DOI: 10.1007/978-3-030-95929-6_18. URL: http://dx.doi.org/10.1007/978-3-030-95929-6_18.

[15] H. Wang and R. Niu. “Knowledge Service Technology for Supporting Intelligent Product Design”. In: Shock and Vibration 2021.1 (Jan. 2021). Ed. by B. Niu. ISSN: 1875-9203. DOI: 10.1155/2021/2561950. URL: http://dx.doi.org/10.1155/2021/2561950.