QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for {PET} Kinetic Analysis
Abstract
Citation
Please, cite this work as:
[Lóp+19] F. J. López-González, J. Paredes-Pacheco, K. Thurnhofer-Hemsi, et al. “QModeling: a Multiplatform, Easy-to-Use and Open-Source Toolbox for PET Kinetic Analysis”. In: Neuroinformatics 17.1 (2019), pp. 103-114. DOI: 10.1007/S12021-018-9384-Y. URL: https://doi.org/10.1007/s12021-018-9384-y.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] X. Chen, Y. Liu, D. Pan, et al. “68Ga-NOTA PET imaging for gastric emptying assessment in mice”. In: BMC Gastroenterology 21.1 (Feb. 2021). ISSN: 1471-230X. DOI: 10.1186/s12876-021-01642-7. URL: http://dx.doi.org/10.1186/s12876-021-01642-7.
[2] K. Chiotis, C. Johansson, E. Rodriguez-Vieitez, et al. “Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer’s disease with multi-modal PET and plasma GFAP”. In: Molecular Neurodegeneration 18.1 (Sep. 2023). ISSN: 1750-1326. DOI: 10.1186/s13024-023-00647-y. URL: http://dx.doi.org/10.1186/s13024-023-00647-y.
[3] J. Jiao, F. Heeman, R. Dixon, et al. “NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data”. In: Neuroinformatics 21.2 (Jan. 2023), p. 457–468. ISSN: 1559-0089. DOI: 10.1007/s12021-022-09616-0. URL: http://dx.doi.org/10.1007/s12021-022-09616-0.
[4] M. Meindl, A. Zatcepin, J. Gnörich, et al. “Assessment of [18F]PI-2620 Tau-PET Quantification via Non-Invasive Automatized Image Derived Input Function”. In: European Journal of Nuclear Medicine and Molecular Imaging 51.11 (May. 2024), p. 3252–3266. ISSN: 1619-7089. DOI: 10.1007/s00259-024-06741-7. URL: http://dx.doi.org/10.1007/s00259-024-06741-7.
[5] T. Puri, M. L. Frost, A. E. B. Moore, et al. “Input function and modeling for determining bone metabolic flux using [18F] sodium fluoride PET imaging: A step‐by‐step guide”. In: Medical Physics 50.4 (Dec. 2022), p. 2071–2088. ISSN: 2473-4209. DOI: 10.1002/mp.16125. URL: http://dx.doi.org/10.1002/mp.16125.
[6] E. Rodriguez-Vieitez, A. Kumar, M. Malarte, et al. “Imaging Neuroinflammation: Quantification of Astrocytosis in a Multitracer PET Approach”. In: Biomarkers for Alzheimer’s Disease Drug Development. Springer US, 2024, p. 195–218. ISBN: 9781071637746. DOI: 10.1007/978-1-0716-3774-6_13. URL: http://dx.doi.org/10.1007/978-1-0716-3774-6_13.
[7] S. N. Roemer, M. Brendel, J. Gnörich, et al. “Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies”. In: Brain 147.7 (Jun. 2024), p. 2428–2439. ISSN: 1460-2156. DOI: 10.1093/brain/awae174. URL: http://dx.doi.org/10.1093/brain/awae174.
[8] K. Sabaroedin, A. Razi, S. Chopra, et al. “Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum”. In: Brain 146.1 (Jan. 2022), p. 372–386. ISSN: 1460-2156. DOI: 10.1093/brain/awac018. URL: http://dx.doi.org/10.1093/brain/awac018.
[9] H. Theis, M. T. Barbe, A. Drzezga, et al. “Progressive Supranuclear Palsy: Subcortical Tau Depositions Are Associated with Cortical Perfusion in Frontal and Limbic Regions”. In: Journal of Parkinson’s Disease 14.6 (Jul. 2024), p. 1271–1276. ISSN: 1877-718X. DOI: 10.3233/jpd-240210. URL: http://dx.doi.org/10.3233/jpd-240210.
[10] H. Theis, G. N. Bischof, N. Brüggemann, et al. “In Vivo Measurement of Tau Depositions in Anti-IgLON5 Disease Using [18F]PI-2620 PET”. In: Neurology 101.22 (Nov. 2023). ISSN: 1526-632X. DOI: 10.1212/wnl.0000000000207870. URL: http://dx.doi.org/10.1212/wnl.0000000000207870.
[11] P. Vizza, E. Succurro, G. Pozzi, et al. “A Methodology to Measure Glucose Metabolism by Quantitative Analysis of PET Images”. In: Journal of Healthcare Informatics Research 8.4 (Sep. 2024), p. 640–657. ISSN: 2509-498X. DOI: 10.1007/s41666-024-00172-7. URL: http://dx.doi.org/10.1007/s41666-024-00172-7.
[12] J. Yun and Y. Kim. “Deficits of Neurotransmitter Systems and Altered Brain Connectivity in Major Depression: A Translational Neuroscience Perspective”. In: Translational Research Methods for Major Depressive Disorder. Springer US, 2022, p. 311–324. ISBN: 9781071620830. DOI: 10.1007/978-1-0716-2083-0_14. URL: http://dx.doi.org/10.1007/978-1-0716-2083-0_14.
