-fuzzy relational mathematical morphology based on adjoint triples
Abstract
Citation
Please, cite this work as:
[Mad+19] N. Madrid, M. Ojeda-Aciego, J. Medina, et al. “L-fuzzy relational mathematical morphology based on adjoint triples”. In: Inf. Sci. 474 (2019), pp. 75-89. DOI: 10.1016/J.INS.2018.09.028. URL: https://doi.org/10.1016/j.ins.2018.09.028.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] M. Aiguier and I. Bloch. “Logical dual concepts based on mathematical morphology in stratified institutions: applications to spatial reasoning”. In: Journal of Applied Non-Classical Logics 29.4 (Sep. 2019), p. 392–429. ISSN: 1958-5780. DOI: 10.1080/11663081.2019.1668678. URL: http://dx.doi.org/10.1080/11663081.2019.1668678.
[2] M. Aiguier, I. Bloch, and R. Pino-Pérez. Abstract Mathematical morphology based on structuring element: Application to morpho-logic. 2020. DOI: 10.48550/ARXIV.2005.01715. URL: https://arxiv.org/abs/2005.01715.
[3] Y. Chi and J. Li. “Concrete Application of Computer Virtual Image Technology in Modern Sports Training”. In: Computational Intelligence and Neuroscience 2022 (Mar. 2022). Ed. by Y. Gu, p. 1–10. ISSN: 1687-5265. DOI: 10.1155/2022/6807106. URL: http://dx.doi.org/10.1155/2022/6807106.
[4] M. E. Cornejo, D. Lobo, and J. Medina. “Solving Generalized Equations with Bounded Variables and Multiple Residuated Operators”. In: Mathematics 8.11 (Nov. 2020), p. 1992. ISSN: 2227-7390. DOI: 10.3390/math8111992. URL: http://dx.doi.org/10.3390/math8111992.
[5] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Algebraic structure and characterization of adjoint triples”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 117–139. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.002. URL: http://dx.doi.org/10.1016/j.fss.2021.02.002.
[6] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Algebraic Structure of Adjoint Triples Generating a Weak Negation on the Unit Interval”. In: Rough Sets. Springer International Publishing, 2020, p. 337–348. ISBN: 9783030527051. DOI: 10.1007/978-3-030-52705-1_25. URL: http://dx.doi.org/10.1007/978-3-030-52705-1_25.
[7] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Implication operators generating pairs of weak negations and their algebraic structure”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 18–39. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.008. URL: http://dx.doi.org/10.1016/j.fss.2020.01.008.
[8] J. Guo, Y. Wang, Y. Qin, et al. “Factors Affecting Evaluation of Railway Bulk Freight Rate: A Novel Cloud Theory-Based Approach”. In: Journal of Advanced Transportation 2022 (Sep. 2022). Ed. by A. Severino, p. 1–14. ISSN: 0197-6729. DOI: 10.1155/2022/1568449. URL: http://dx.doi.org/10.1155/2022/1568449.
[9] X. Han and W. Yao. “RETRACTED: Basic concepts of complete residuated lattice-valued fuzzy mathematical morphology”. In: Journal of Intelligent & Fuzzy Systems 47.1_suppl (Apr. 2024), p. 303–312. ISSN: 1875-8967. DOI: 10.3233/jifs-238540. URL: http://dx.doi.org/10.3233/jifs-238540.
[10] N. Madrid, J. Medina, and E. Ramírez-Poussa. “Rough sets based on Galois connections”. In: International Journal of Applied Mathematics and Computer Science 30.2 (2020). ISSN: 2083-8492. DOI: 10.34768/amcs-2020-0023. URL: http://dx.doi.org/10.34768/amcs-2020-0023.
[11] N. Madrid and M. Ojeda-Aciego. “Some Relationships Between the Notions of f-Inclusion and f-Contradiction”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 175–181. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_20. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_20.
[12] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.
[13] N. Madrid, M. Ojeda‐Aciego, and E. Ramírez‐Poussa. “On the φ‐Index of Inclusion: Studying the Structure Generated by a Subset of Indexes”. In: Mathematical Methods in the Applied Sciences (Feb. 2025). ISSN: 1099-1476. DOI: 10.1002/mma.10833. URL: http://dx.doi.org/10.1002/mma.10833.
[14] M. Matzenauer, R. Reiser, H. Santos, et al. “Strategies on admissible total orders over typical hesitant fuzzy implications applied to decision making problems”. In: International Journal of Intelligent Systems 36.5 (Feb. 2021), p. 2144–2182. ISSN: 1098-111X. DOI: 10.1002/int.22374. URL: http://dx.doi.org/10.1002/int.22374.
[15] A. Sostak and I. Uljane. “Some remarks on topological structures in the context of fuzzy relational mathematical morphology”. In: Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). eusflat-19. Atlantis Press, 2019. DOI: 10.2991/eusflat-19.2019.106. URL: http://dx.doi.org/10.2991/eusflat-19.2019.106.
[16] A. Šostak and I. Uljane. “On Two Categories of Many-Level Fuzzy Morphological Spaces”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 207–217. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_24. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_24.
[17] A. Šostak and I. Uļjane. “Aggregation of Operators of Fuzzy Relational Mathematical Morphology: Erosion and Dilation”. In: Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP). ifsa-eusflat-agop-21. Atlantis Press, 2021. DOI: 10.2991/asum.k.210827.090. URL: http://dx.doi.org/10.2991/asum.k.210827.090.
[18] A. Šostak and I. Uļjane. “Fuzzy Relations: The Fundament for Fuzzy Rough Approximation, Fuzzy Concept Analysis and Fuzzy Mathematical Morphology”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 4. Springer International Publishing, Sep. 2022, p. 25–35. ISBN: 9783031077074. DOI: 10.1007/978-3-031-07707-4_4. URL: http://dx.doi.org/10.1007/978-3-031-07707-4_4.
[19] A. Šostak and I. Uļjane. “Powerset operators induced by fuzzy relations as a basis for fuzzification of various mathematical structures”. In: International Journal of Approximate Reasoning 155 (Apr. 2023), p. 17–39. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2022.12.013. URL: http://dx.doi.org/10.1016/j.ijar.2022.12.013.
[20] A. Šostak, I. Uljane, and P. Eklund. “Fuzzy Relational Mathematical Morphology: Erosion and Dilation”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2020, p. 712–725. ISBN: 9783030501532. DOI: 10.1007/978-3-030-50153-2_52. URL: http://dx.doi.org/10.1007/978-3-030-50153-2_52.
[21] P. Sussner, L. C. Carazas, and E. X. Miqueles. “Some Approaches Based on Interval-Valued Images and L-Fuzzy Mathematical Morphology for Segmenting Images Reconstructed from Noisy Sinograms”. In: Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP). ifsa-eusflat-agop-21. Atlantis Press, 2021. DOI: 10.2991/asum.k.210827.060. URL: http://dx.doi.org/10.2991/asum.k.210827.060.
[22] J. Wei, J. Yang, and X. Liu. “A text extraction framework of financial report in traditional format with OpenCV”. In: Journal of Intelligent & Fuzzy Systems 46.4 (Apr. 2024), p. 8089–8108. ISSN: 1875-8967. DOI: 10.3233/jifs-234170. URL: http://dx.doi.org/10.3233/jifs-234170.
[23] X. Zhang, M. Li, and H. Liu. “Overlap Functions-Based Fuzzy Mathematical Morphological Operators and Their Applications in Image Edge Extraction”. In: Fractal and Fractional 7.6 (Jun. 2023), p. 465. ISSN: 2504-3110. DOI: 10.3390/fractalfract7060465. URL: http://dx.doi.org/10.3390/fractalfract7060465.
[24] X. Zhang, R. Liang, H. Bustince, et al. “Pseudo Overlap Functions, Fuzzy Implications and Pseudo Grouping Functions with Applications”. In: Axioms 11.11 (Oct. 2022), p. 593. ISSN: 2075-1680. DOI: 10.3390/axioms11110593. URL: http://dx.doi.org/10.3390/axioms11110593.