Reducing the search space by closure and simplification paradigms

Authors

Fernando Benito Picazo

Pablo Cordero

Manuel Enciso

Ángel Mora

Published

1 January 2017

Publication details

J. Supercomput. vol. 73 (1), pages 75–87.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Pic+17] F. B. Picazo, P. Cordero, M. Enciso, et al. “Reducing the search space by closure and simplification paradigms”. In: J. Supercomput. 73.1 (2017), pp. 75-87. DOI: 10.1007/S11227-016-1622-1. URL: https://doi.org/10.1007/s11227-016-1622-1.

@Article{Picazo2017,
     author = {Fernando Benito Picazo and Pablo Cordero and Manuel Enciso and {’A}ngel Mora},
     journal = {J. Supercomput.},
     title = {Reducing the search space by closure and simplification paradigms},
     year = {2017},
     number = {1},
     pages = {75–87},
     volume = {73},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/tjs/PicazoCEM17.bib},
     doi = {10.1007/S11227-016-1622-1},
     timestamp = {Wed, 28 Sep 2022 01:00:00 +0200},
     url = {https://doi.org/10.1007/s11227-016-1622-1},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 2
  • Scopus - Citation Indexes: 3
  • Captures
  • Mendeley - Readers: 6
  • Mendeley - Readers: 1

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202220180.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] F. Benito-Picazo, P. Cordero, M. Enciso, et al. “Minimal generators, an affordable approach by means of massive computation”. In: The Journal of Supercomputing 75.3 (Jun. 2018), p. 1350–1367. ISSN: 1573-0484. DOI: 10.1007/s11227-018-2453-z. URL: http://dx.doi.org/10.1007/s11227-018-2453-z.

[2] R. Takhanov. “The algebraic structure of the densification and the sparsification tasks for CSPs”. In: Constraints 28.1 (Dec. 2022), p. 13–44. ISSN: 1572-9354. DOI: 10.1007/s10601-022-09340-1. URL: http://dx.doi.org/10.1007/s10601-022-09340-1.