On reductants in the framework of multi-adjoint logic programming
Abstract
Citation
Please, cite this work as:
[IMO17] P. J. Iranzo, J. Medina, and M. Ojeda-Aciego. “On reductants in the framework of multi-adjoint logic programming”. In: Fuzzy Sets Syst. 317 (2017), pp. 27-43. DOI: 10.1016/J.FSS.2016.09.004. URL: https://doi.org/10.1016/j.fss.2016.09.004.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[2] F. Chacón-Gómez, M. E. Cornejo, J. Medina, et al. “Rough set decision algorithms for modeling with uncertainty”. In: Journal of Computational and Applied Mathematics 437 (Feb. 2024), p. 115413. ISSN: 0377-0427. DOI: 10.1016/j.cam.2023.115413. URL: http://dx.doi.org/10.1016/j.cam.2023.115413.
[3] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “Multi-adjoint lattice logic and truth-stressing hedges”. In: Fuzzy Sets and Systems 445 (Sep. 2022), p. 43–65. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.03.006. URL: http://dx.doi.org/10.1016/j.fss.2022.03.006.
[4] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “Multi-adjoint Lattice Logic. Properties and Query Answering”. In: Progress in Artificial Intelligence. Springer International Publishing, 2022, p. 701–712. ISBN: 9783031164743. DOI: 10.1007/978-3-031-16474-3_57. URL: http://dx.doi.org/10.1007/978-3-031-16474-3_57.
[5] M. E. Cornejo, D. Lobo, and J. Medina. “Extended multi-adjoint logic programming”. In: Fuzzy Sets and Systems 388 (Jun. 2020), p. 124–145. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.03.016. URL: http://dx.doi.org/10.1016/j.fss.2019.03.016.
[6] M. E. Cornejo, D. Lobo, and J. Medina. “Measuring the Incoherent Information in Multi-adjoint Normal Logic Programs”. In: Advances in Fuzzy Logic and Technology 2017. Springer International Publishing, Sep. 2017, p. 521–533. ISBN: 9783319668307. DOI: 10.1007/978-3-319-66830-7_47. URL: http://dx.doi.org/10.1007/978-3-319-66830-7_47.
[7] M. E. Cornejo, D. Lobo, and J. Medina. “Relating Multi-Adjoint Normal Logic Programs to Core Fuzzy Answer Set Programs from a Semantical Approach”. In: Mathematics 8.6 (Jun. 2020), p. 881. ISSN: 2227-7390. DOI: 10.3390/math8060881. URL: http://dx.doi.org/10.3390/math8060881.
[8] M. E. Cornejo and J. Medina. “Right Adjoint Algebras Versus Operator Left Residuated Posets”. In: Rough Sets. Springer International Publishing, 2021, p. 180–191. ISBN: 9783030873349. DOI: 10.1007/978-3-030-87334-9_15. URL: http://dx.doi.org/10.1007/978-3-030-87334-9_15.
[9] J. C. Díaz-Moreno, J. Medina, and J. R. Portillo. “Fuzzy logic programs as hypergraphs. Termination results”. In: Fuzzy Sets and Systems 445 (Sep. 2022), p. 22–42. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.02.001. URL: http://dx.doi.org/10.1016/j.fss.2022.02.001.
[10] Y. P. Kondratenko, G. Kondratenko, and I. Sidenko. “Intelligent Decision Support System for Selecting the University-Industry Cooperation Model Using Modified Antecedent-Consequent Method”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. Springer International Publishing, 2018, p. 596–607. ISBN: 9783319914763. DOI: 10.1007/978-3-319-91476-3_49. URL: http://dx.doi.org/10.1007/978-3-319-91476-3_49.
[11] Y. P. Kondratenko, O. V. Kozlov, and O. V. Korobko. “Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. Springer International Publishing, 2018, p. 570–582. ISBN: 9783319914763. DOI: 10.1007/978-3-319-91476-3_47. URL: http://dx.doi.org/10.1007/978-3-319-91476-3_47.
[12] X. Lv, D. Zhou, Y. Tang, et al. “An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO”. In: Complexity 2018.1 (Jan. 2018). Ed. by L. T. Kóczy. ISSN: 1099-0526. DOI: 10.1155/2018/3942723. URL: http://dx.doi.org/10.1155/2018/3942723.
[13] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.