On the construction of adjunctions between a fuzzy preposet and an unstructured set

Authors

Inma P. Cabrera

Pablo Cordero

Francisca García-Pardo

Manuel Ojeda-Aciego

Bernard De Baets

Published

1 January 2017

Publication details

Fuzzy Sets Syst. vol. 320 , pages 81–92.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Cab+17] I. P. Cabrera, P. Cordero, F. Garc'-Pardo, et al. “On the construction of adjunctions between a fuzzy preposet and an unstructured set”. In: Fuzzy Sets Syst. 320 (2017), pp. 81-92. DOI: 10.1016/J.FSS.2016.09.013. URL: https://doi.org/10.1016/j.fss.2016.09.013.

@Article{Cabrera2017,
     author = {Inma P. Cabrera and Pablo Cordero and Francisca Garc'-Pardo and Manuel Ojeda-Aciego and Bernard De Baets},
     journal = {Fuzzy Sets Syst.},
     title = {On the construction of adjunctions between a fuzzy preposet and an unstructured set},
     year = {2017},
     pages = {81–92},
     volume = {320},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/CabreraCGOB17.bib},
     doi = {10.1016/J.FSS.2016.09.013},
     timestamp = {Sat, 30 Sep 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2016.09.013},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 10
  • Scopus - Citation Indexes: 24
  • Captures
  • Mendeley - Readers: 8

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202420232022202120202019201720160246
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.

[2] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “A Relational Extension of Galois Connections”. In: Formal Concept Analysis. Springer International Publishing, 2019, p. 290–303. ISBN: 9783030214623. DOI: 10.1007/978-3-030-21462-3_19. URL: http://dx.doi.org/10.1007/978-3-030-21462-3_19.

[3] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Galois Connections Between Unbalanced Structures in a Fuzzy Framework”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2020, p. 736–747. ISBN: 9783030501532. DOI: 10.1007/978-3-030-50153-2_54. URL: http://dx.doi.org/10.1007/978-3-030-50153-2_54.

[4] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Connections Between Preordered Sets”. In: Applied Physics, System Science and Computers III. Springer International Publishing, 2019, p. 163–169. ISBN: 9783030215071. DOI: 10.1007/978-3-030-21507-1_24. URL: http://dx.doi.org/10.1007/978-3-030-21507-1_24.

[5] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “On the Definition of Fuzzy Relational Galois Connections Between Fuzzy Transitive Digraphs”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 100–106. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_9. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_9.

[6] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Galois connections between transitive digraphs: Characterization and construction”. In: Information Sciences 519 (May. 2020), p. 439–450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.01.034. URL: http://dx.doi.org/10.1016/j.ins.2020.01.034.

[7] I. P. Cabrera, P. Cordero, E. Muñoz‐Velasco, et al. “Relational Galois connections between transitive fuzzy digraphs”. In: Mathematical Methods in the Applied Sciences 43.9 (Feb. 2020), p. 5673–5680. ISSN: 1099-1476. DOI: 10.1002/mma.6302. URL: http://dx.doi.org/10.1002/mma.6302.

[8] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “On fuzzy relations, adjunctions, and functional fuzzy relations”. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2016, p. 1–7. DOI: 10.1109/ssci.2016.7850149. URL: http://dx.doi.org/10.1109/ssci.2016.7850149.

[9] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Relational fuzzy Galois connections”. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Jun. 2017, p. 1–6. DOI: 10.1109/ifsa-scis.2017.8023288. URL: http://dx.doi.org/10.1109/ifsa-scis.2017.8023288.

[10] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Towards relational fuzzy adjunctions”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–5. DOI: 10.1109/fuzz-ieee.2017.8015677. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015677.

[11] I. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Fuzzy relational Galois connections between fuzzy transitive digraphs”. In: Fuzzy Sets and Systems 463 (Jul. 2023), p. 108456. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.12.012. URL: http://dx.doi.org/10.1016/j.fss.2022.12.012.

[12] I. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Galois connections in computational intelligence: A short survey”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–7. DOI: 10.1109/ssci.2017.8285310. URL: http://dx.doi.org/10.1109/ssci.2017.8285310.

[13] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Implication operators generating pairs of weak negations and their algebraic structure”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 18–39. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.008. URL: http://dx.doi.org/10.1016/j.fss.2020.01.008.

[14] E. K. Horváth, S. Radeleczki, B. Šešelja, et al. “Cuts of poset-valued functions in the framework of residuated maps”. In: Fuzzy Sets and Systems 397 (Oct. 2020), p. 28–40. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.003. URL: http://dx.doi.org/10.1016/j.fss.2020.01.003.

[15] N. Madrid and M. Ojeda-Aciego. “On Contradiction and Inclusion Using Functional Degrees”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 464. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200409.001. URL: http://dx.doi.org/10.2991/ijcis.d.200409.001.

[16] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.

[17] M. Ojeda-Hernandez, I. P. Cabrera, P. Cordero, et al. “On (fuzzy) closure systems in complete fuzzy lattices”. In: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2021, p. 1–6. DOI: 10.1109/fuzz45933.2021.9494404. URL: http://dx.doi.org/10.1109/fuzz45933.2021.9494404.

[18] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Closure Systems as a Fuzzy Extension of Meet-subsemilattices”. In: Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP). ifsa-eusflat-agop-21. Atlantis Press, 2021. DOI: 10.2991/asum.k.210827.006. URL: http://dx.doi.org/10.2991/asum.k.210827.006.

[19] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Fuzzy closure systems: Motivation, definition and properties”. In: International Journal of Approximate Reasoning 148 (Sep. 2022), p. 151–161. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2022.06.004. URL: http://dx.doi.org/10.1016/j.ijar.2022.06.004.

[20] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Relational Extension of Closure Structures”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 77–86. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_7. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_7.

[21] B. Šešelja and A. Tepavčević. “Congruences on Lattices and Lattice-Valued Functions”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 219–228. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_25. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_25.

[22] B. Šešelja and A. Tepavčević. “Kernels of Residuated Maps as Complete Congruences in Lattices”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 966. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200714.001. URL: http://dx.doi.org/10.2991/ijcis.d.200714.001.