Canonical dichotomous direct bases
Abstract
Citation
Please, cite this work as:
[Rod+17] E. Rodr', P. Cordero, M. Enciso, et al. “Canonical dichotomous direct bases”. In: Inf. Sci. 376 (2017), pp. 39-53. DOI: 10.1016/J.INS.2016.10.004. URL: https://doi.org/10.1016/j.ins.2016.10.004.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] F. Benito-Picazo, P. Cordero, M. Enciso, et al. “Minimal generators, an affordable approach by means of massive computation”. In: The Journal of Supercomputing 75.3 (Jun. 2018), p. 1350–1367. ISSN: 1573-0484. DOI: 10.1007/s11227-018-2453-z. URL: http://dx.doi.org/10.1007/s11227-018-2453-z.
[2] P. Cordero, M. Enciso, Á. Mora, et al. “A Formal Concept Analysis Approach to Cooperative Conversational Recommendation”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 1243. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200806.001. URL: http://dx.doi.org/10.2991/ijcis.d.200806.001.
[3] D. Dubois, J. Medina, and H. Prade. “Extracting attribute implications from a formal context: Unifying the basic approaches”. In: Information Sciences 689 (Jan. 2025), p. 121419. ISSN: 0020-0255. DOI: 10.1016/j.ins.2024.121419. URL: http://dx.doi.org/10.1016/j.ins.2024.121419.
[4] D. López-Rodríguez, E. Muñoz-Velasco, and M. Ojeda-Aciego. “Formal Methods in FCA and Big Data”. In: Complex Data Analytics with Formal Concept Analysis. Springer International Publishing, Dec. 2021, p. 201–224. ISBN: 9783030932787. DOI: 10.1007/978-3-030-93278-7_9. URL: http://dx.doi.org/10.1007/978-3-030-93278-7_9.
[5] J. Medina, P. Navareño, and E. Ramírez-Poussa. “Knowledge Implications in Multi-adjoint Concept Lattices”. In: Computational Intelligence and Mathematics for Tackling Complex Problems 2. Springer International Publishing, 2022, p. 155–161. ISBN: 9783030888176. DOI: 10.1007/978-3-030-88817-6_18. URL: http://dx.doi.org/10.1007/978-3-030-88817-6_18.
[6] M. Ojeda-Hernández, I. P. Cabrera, and P. Cordero. “Quasi-closed elements in fuzzy posets”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113390. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113390. URL: http://dx.doi.org/10.1016/j.cam.2021.113390.
