Concept lattices with negative information: {A} characterization theorem
Abstract
Citation
Please, cite this work as:
[Rod+16] J. M. Rodr'-Jiménez, P. Cordero, M. Enciso, et al. “Concept lattices with negative information: A characterization theorem”. In: Inf. Sci. 369 (2016), pp. 51-62. DOI: 10.1016/J.INS.2016.06.015. URL: https://doi.org/10.1016/j.ins.2016.06.015.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] P. Cordero, M. Enciso, A. Mora, et al. “Inference of Mixed Information in Formal Concept Analysis”. In: Trends in Mathematics and Computational Intelligence. Springer International Publishing, Oct. 2018, p. 81–87. ISBN: 9783030004859. DOI: 10.1007/978-3-030-00485-9_9. URL: http://dx.doi.org/10.1007/978-3-030-00485-9_9.
[2] D. Dubois, J. Medina, and H. Prade. “Extracting attribute implications from a formal context: Unifying the basic approaches”. In: Information Sciences 689 (Jan. 2025), p. 121419. ISSN: 0020-0255. DOI: 10.1016/j.ins.2024.121419. URL: http://dx.doi.org/10.1016/j.ins.2024.121419.
[3] D. Dubois, J. Medina, H. Prade, et al. “Disjunctive attribute dependencies in formal concept analysis under the epistemic view of formal contexts”. In: Information Sciences 561 (Jun. 2021), p. 31–51. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.12.085. URL: http://dx.doi.org/10.1016/j.ins.2020.12.085.
[4] B. Fan, E. C. C. Tsang, W. Xu, et al. “Attribute-oriented cognitive concept learning strategy: a multi-level method”. In: International Journal of Machine Learning and Cybernetics 10.9 (Oct. 2018), p. 2421–2437. ISSN: 1868-808X. DOI: 10.1007/s13042-018-0879-5. URL: http://dx.doi.org/10.1007/s13042-018-0879-5.
[5] N. Gao, Z. Cao, Q. Li, et al. “Lattice-theoretic three-way formal contexts and their concepts”. In: Soft Computing 26.18 (Jul. 2022), p. 8971–8985. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07294-3. URL: http://dx.doi.org/10.1007/s00500-022-07294-3.
[6] C. Hong Pak, J. Hong Kim, and M. Guk Jong. “Describing hierarchy of concept lattice by using matrix”. In: Information Sciences 542 (Jan. 2021), p. 58–70. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.05.020. URL: http://dx.doi.org/10.1016/j.ins.2020.05.020.
[7] R. Janostik, J. Konecny, and P. Krajča. “Interface between Logical Analysis of Data and Formal Concept Analysis”. In: European Journal of Operational Research 284.2 (Jul. 2020), p. 792–800. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2020.01.015. URL: http://dx.doi.org/10.1016/j.ejor.2020.01.015.
[8] J. Konecny. “Attribute implications in L-concept analysis with positive and negative attributes: Validity and properties of models”. In: International Journal of Approximate Reasoning 120 (May. 2020), p. 203–215. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2020.02.009. URL: http://dx.doi.org/10.1016/j.ijar.2020.02.009.
[9] J. Konecny. “On attribute reduction in concept lattices: Methods based on discernibility matrix are outperformed by basic clarification and reduction”. In: Information Sciences 415–416 (Nov. 2017), p. 199–212. ISSN: 0020-0255. DOI: 10.1016/j.ins.2017.06.013. URL: http://dx.doi.org/10.1016/j.ins.2017.06.013.
[10] N. Leutwyler, M. Lezoche, C. Franciosi, et al. “Methods for concept analysis and multi-relational data mining: a systematic literature review”. In: Knowledge and Information Systems 66.9 (May. 2024), p. 5113–5150. ISSN: 0219-3116. DOI: 10.1007/s10115-024-02139-x. URL: http://dx.doi.org/10.1007/s10115-024-02139-x.
[11] S. McLachlan, K. Dube, T. Gallagher, et al. “Realistic Synthetic Data Generation: The ATEN Framework”. In: Biomedical Engineering Systems and Technologies. Springer International Publishing, 2019, p. 497–523. ISBN: 9783030291969. DOI: 10.1007/978-3-030-29196-9_25. URL: http://dx.doi.org/10.1007/978-3-030-29196-9_25.
[12] M. Ojeda‐Aciego and J. M. Rodriguez‐Jimenez. “Formal concept analysis with negative attributes for forgery detection”. In: Computational and Mathematical Methods 3.6 (Sep. 2020). ISSN: 2577-7408. DOI: 10.1002/cmm4.1124. URL: http://dx.doi.org/10.1002/cmm4.1124.
[13] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Computing the Mixed Concept Lattice”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 87–99. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_8. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_8.
[14] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “A New Kind of Implication to Reason with Unknown Information”. In: Formal Concept Analysis. Springer International Publishing, 2021, p. 74–90. ISBN: 9783030778675. DOI: 10.1007/978-3-030-77867-5_5. URL: http://dx.doi.org/10.1007/978-3-030-77867-5_5.
[15] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Simplification logic for the management of unknown information”. In: Information Sciences 634 (Jul. 2023), p. 505–519. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.03.015. URL: http://dx.doi.org/10.1016/j.ins.2023.03.015.
[16] F. Pérez-Gámez, D. López-Rodríguez, P. Cordero, et al. “Simplifying Implications with Positive and Negative Attributes: A Logic-Based Approach”. In: Mathematics 10.4 (Feb. 2022), p. 607. ISSN: 2227-7390. DOI: 10.3390/math10040607. URL: http://dx.doi.org/10.3390/math10040607.
[17] X. Ren, D. Li, and Y. Zhai. “Research on mixed decision implications based on formal concept analysis”. In: International Journal of Cognitive Computing in Engineering 4 (Jun. 2023), p. 71–77. ISSN: 2666-3074. DOI: 10.1016/j.ijcce.2023.02.007. URL: http://dx.doi.org/10.1016/j.ijcce.2023.02.007.
[18] J. M. Rodriguez-Jimenez. “Detecting Criminal Behaviour Patterns in Spain and Italy Using Formal Concept Analysis”. In: Traffic Mining Applied to Police Activities. Springer International Publishing, 2018, p. 57–68. ISBN: 9783319756080. DOI: 10.1007/978-3-319-75608-0_5. URL: http://dx.doi.org/10.1007/978-3-319-75608-0_5.
[19] B. Sinclair-Desgagne. “Mining for Unknown Unknowns”. In: SSRN Electronic Journal (2023). ISSN: 1556-5068. DOI: 10.2139/ssrn.4426652. URL: http://dx.doi.org/10.2139/ssrn.4426652.
[20] B. Sinclair-Desgagné. “Measuring innovation and innovativeness: a data-mining approach”. In: Quality & Quantity 56.4 (Sep. 2021), p. 2415–2434. ISSN: 1573-7845. DOI: 10.1007/s11135-021-01231-6. URL: http://dx.doi.org/10.1007/s11135-021-01231-6.
[21] B. Sinclair-Desgagné. “Mining for Unknown Unknowns”. In: Electronic Proceedings in Theoretical Computer Science 379 (Jul. 2023), p. 507–517. ISSN: 2075-2180. DOI: 10.4204/eptcs.379.38. URL: http://dx.doi.org/10.4204/eptcs.379.38.
[22] E. C. C. Tsang, B. Fan, D. Chen, et al. “Multi-level cognitive concept learning method oriented to data sets with fuzziness: a perspective from features”. In: Soft Computing 24.5 (Jun. 2019), p. 3753–3770. ISSN: 1433-7479. DOI: 10.1007/s00500-019-04144-7. URL: http://dx.doi.org/10.1007/s00500-019-04144-7.
[23] L. Wei, L. Liu, J. Qi, et al. “Rules acquisition of formal decision contexts based on three-way concept lattices”. In: Information Sciences 516 (Apr. 2020), p. 529–544. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.12.024. URL: http://dx.doi.org/10.1016/j.ins.2019.12.024.
[24] H. Yu, Q. Li, and M. Cai. “Characteristics of three-way concept lattices and three-way rough concept lattices”. In: Knowledge-Based Systems 146 (Apr. 2018), p. 181–189. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2018.02.007. URL: http://dx.doi.org/10.1016/j.knosys.2018.02.007.
[25] Y. Zhai, J. Qi, D. Li, et al. “The structure theorem of three-way concept lattice”. In: International Journal of Approximate Reasoning 146 (Jul. 2022), p. 157–173. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2022.04.007. URL: http://dx.doi.org/10.1016/j.ijar.2022.04.007.
