Concept lattices with negative information: {A} characterization theorem

Authors

José Manuel Rodríguez-Jiménez

Pablo Cordero

Manuel Enciso

Sebastian Rudolph

Published

1 January 2016

Publication details

Inf. Sci. vol. 369 , pages 51–62.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Rod+16] J. M. Rodr'-Jiménez, P. Cordero, M. Enciso, et al. “Concept lattices with negative information: A characterization theorem”. In: Inf. Sci. 369 (2016), pp. 51-62. DOI: 10.1016/J.INS.2016.06.015. URL: https://doi.org/10.1016/j.ins.2016.06.015.

@Article{RodriguezJimenez2016,
     author = {Jos{’e} Manuel Rodr'-Jim{’e}nez and Pablo Cordero and Manuel Enciso and Sebastian Rudolph},
     journal = {Inf. Sci.},
     title = {Concept lattices with negative information: {A} characterization theorem},
     year = {2016},
     pages = {51–62},
     volume = {369},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/isci/Rodriguez-Jimenez16.bib},
     doi = {10.1016/J.INS.2016.06.015},
     timestamp = {Wed, 14 Nov 2018 00:00:00 +0100},
     url = {https://doi.org/10.1016/j.ins.2016.06.015},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 13
  • Scopus - Citation Indexes: 37
  • Captures
  • Mendeley - Readers: 8

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

2024202320222021202020192018201720160246
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] P. Cordero, M. Enciso, A. Mora, et al. “Inference of Mixed Information in Formal Concept Analysis”. In: Trends in Mathematics and Computational Intelligence. Springer International Publishing, Oct. 2018, p. 81–87. ISBN: 9783030004859. DOI: 10.1007/978-3-030-00485-9_9. URL: http://dx.doi.org/10.1007/978-3-030-00485-9_9.

[2] D. Dubois, J. Medina, and H. Prade. “Extracting attribute implications from a formal context: Unifying the basic approaches”. In: Information Sciences 689 (Jan. 2025), p. 121419. ISSN: 0020-0255. DOI: 10.1016/j.ins.2024.121419. URL: http://dx.doi.org/10.1016/j.ins.2024.121419.

[3] D. Dubois, J. Medina, H. Prade, et al. “Disjunctive attribute dependencies in formal concept analysis under the epistemic view of formal contexts”. In: Information Sciences 561 (Jun. 2021), p. 31–51. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.12.085. URL: http://dx.doi.org/10.1016/j.ins.2020.12.085.

[4] B. Fan, E. C. C. Tsang, W. Xu, et al. “Attribute-oriented cognitive concept learning strategy: a multi-level method”. In: International Journal of Machine Learning and Cybernetics 10.9 (Oct. 2018), p. 2421–2437. ISSN: 1868-808X. DOI: 10.1007/s13042-018-0879-5. URL: http://dx.doi.org/10.1007/s13042-018-0879-5.

[5] N. Gao, Z. Cao, Q. Li, et al. “Lattice-theoretic three-way formal contexts and their concepts”. In: Soft Computing 26.18 (Jul. 2022), p. 8971–8985. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07294-3. URL: http://dx.doi.org/10.1007/s00500-022-07294-3.

[6] C. Hong Pak, J. Hong Kim, and M. Guk Jong. “Describing hierarchy of concept lattice by using matrix”. In: Information Sciences 542 (Jan. 2021), p. 58–70. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.05.020. URL: http://dx.doi.org/10.1016/j.ins.2020.05.020.

[7] R. Janostik, J. Konecny, and P. Krajča. “Interface between Logical Analysis of Data and Formal Concept Analysis”. In: European Journal of Operational Research 284.2 (Jul. 2020), p. 792–800. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2020.01.015. URL: http://dx.doi.org/10.1016/j.ejor.2020.01.015.

[8] J. Konecny. “Attribute implications in L-concept analysis with positive and negative attributes: Validity and properties of models”. In: International Journal of Approximate Reasoning 120 (May. 2020), p. 203–215. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2020.02.009. URL: http://dx.doi.org/10.1016/j.ijar.2020.02.009.

[9] J. Konecny. “On attribute reduction in concept lattices: Methods based on discernibility matrix are outperformed by basic clarification and reduction”. In: Information Sciences 415–416 (Nov. 2017), p. 199–212. ISSN: 0020-0255. DOI: 10.1016/j.ins.2017.06.013. URL: http://dx.doi.org/10.1016/j.ins.2017.06.013.

[10] N. Leutwyler, M. Lezoche, C. Franciosi, et al. “Methods for concept analysis and multi-relational data mining: a systematic literature review”. In: Knowledge and Information Systems 66.9 (May. 2024), p. 5113–5150. ISSN: 0219-3116. DOI: 10.1007/s10115-024-02139-x. URL: http://dx.doi.org/10.1007/s10115-024-02139-x.

[11] S. McLachlan, K. Dube, T. Gallagher, et al. “Realistic Synthetic Data Generation: The ATEN Framework”. In: Biomedical Engineering Systems and Technologies. Springer International Publishing, 2019, p. 497–523. ISBN: 9783030291969. DOI: 10.1007/978-3-030-29196-9_25. URL: http://dx.doi.org/10.1007/978-3-030-29196-9_25.

[12] M. Ojeda‐Aciego and J. M. Rodriguez‐Jimenez. “Formal concept analysis with negative attributes for forgery detection”. In: Computational and Mathematical Methods 3.6 (Sep. 2020). ISSN: 2577-7408. DOI: 10.1002/cmm4.1124. URL: http://dx.doi.org/10.1002/cmm4.1124.

[13] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Computing the Mixed Concept Lattice”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 87–99. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_8. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_8.

[14] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “A New Kind of Implication to Reason with Unknown Information”. In: Formal Concept Analysis. Springer International Publishing, 2021, p. 74–90. ISBN: 9783030778675. DOI: 10.1007/978-3-030-77867-5_5. URL: http://dx.doi.org/10.1007/978-3-030-77867-5_5.

[15] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Simplification logic for the management of unknown information”. In: Information Sciences 634 (Jul. 2023), p. 505–519. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.03.015. URL: http://dx.doi.org/10.1016/j.ins.2023.03.015.

[16] F. Pérez-Gámez, D. López-Rodríguez, P. Cordero, et al. “Simplifying Implications with Positive and Negative Attributes: A Logic-Based Approach”. In: Mathematics 10.4 (Feb. 2022), p. 607. ISSN: 2227-7390. DOI: 10.3390/math10040607. URL: http://dx.doi.org/10.3390/math10040607.

[17] X. Ren, D. Li, and Y. Zhai. “Research on mixed decision implications based on formal concept analysis”. In: International Journal of Cognitive Computing in Engineering 4 (Jun. 2023), p. 71–77. ISSN: 2666-3074. DOI: 10.1016/j.ijcce.2023.02.007. URL: http://dx.doi.org/10.1016/j.ijcce.2023.02.007.

[18] J. M. Rodriguez-Jimenez. “Detecting Criminal Behaviour Patterns in Spain and Italy Using Formal Concept Analysis”. In: Traffic Mining Applied to Police Activities. Springer International Publishing, 2018, p. 57–68. ISBN: 9783319756080. DOI: 10.1007/978-3-319-75608-0_5. URL: http://dx.doi.org/10.1007/978-3-319-75608-0_5.

[19] B. Sinclair-Desgagne. “Mining for Unknown Unknowns”. In: SSRN Electronic Journal (2023). ISSN: 1556-5068. DOI: 10.2139/ssrn.4426652. URL: http://dx.doi.org/10.2139/ssrn.4426652.

[20] B. Sinclair-Desgagné. “Measuring innovation and innovativeness: a data-mining approach”. In: Quality & Quantity 56.4 (Sep. 2021), p. 2415–2434. ISSN: 1573-7845. DOI: 10.1007/s11135-021-01231-6. URL: http://dx.doi.org/10.1007/s11135-021-01231-6.

[21] B. Sinclair-Desgagné. “Mining for Unknown Unknowns”. In: Electronic Proceedings in Theoretical Computer Science 379 (Jul. 2023), p. 507–517. ISSN: 2075-2180. DOI: 10.4204/eptcs.379.38. URL: http://dx.doi.org/10.4204/eptcs.379.38.

[22] E. C. C. Tsang, B. Fan, D. Chen, et al. “Multi-level cognitive concept learning method oriented to data sets with fuzziness: a perspective from features”. In: Soft Computing 24.5 (Jun. 2019), p. 3753–3770. ISSN: 1433-7479. DOI: 10.1007/s00500-019-04144-7. URL: http://dx.doi.org/10.1007/s00500-019-04144-7.

[23] L. Wei, L. Liu, J. Qi, et al. “Rules acquisition of formal decision contexts based on three-way concept lattices”. In: Information Sciences 516 (Apr. 2020), p. 529–544. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.12.024. URL: http://dx.doi.org/10.1016/j.ins.2019.12.024.

[24] H. Yu, Q. Li, and M. Cai. “Characteristics of three-way concept lattices and three-way rough concept lattices”. In: Knowledge-Based Systems 146 (Apr. 2018), p. 181–189. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2018.02.007. URL: http://dx.doi.org/10.1016/j.knosys.2018.02.007.

[25] Y. Zhai, J. Qi, D. Li, et al. “The structure theorem of three-way concept lattice”. In: International Journal of Approximate Reasoning 146 (Jul. 2022), p. 157–173. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2022.04.007. URL: http://dx.doi.org/10.1016/j.ijar.2022.04.007.