Knowledge discovery in social networks by using a logic-based treatment of implications
Abstract
Citation
Please, cite this work as:
[Cor+15] P. Cordero, M. Enciso, Á. Mora, et al. “Knowledge discovery in social networks by using a logic-based treatment of implications”. In: Knowl. Based Syst. 87 (2015), pp. 16-25. DOI: 10.1016/J.KNOSYS.2015.07.018. URL: https://doi.org/10.1016/j.knosys.2015.07.018.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] O. Addam, A. Chen, W. Hoang, et al. “Foreign exchange data crawling and analysis for knowledge discovery leading to informative decision making”. In: Knowledge-Based Systems 102 (Jun. 2016), p. 1–19. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2016.03.005. URL: http://dx.doi.org/10.1016/j.knosys.2016.03.005.
[2] Ľ. Antoni, P. Eliaš, J. Guniš, et al. “Bimorphisms and attribute implications in heterogeneous formal contexts”. In: International Journal of Approximate Reasoning 172 (Sep. 2024), p. 109245. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2024.109245. URL: http://dx.doi.org/10.1016/j.ijar.2024.109245.
[3] R. G. Aragón, J. Medina, and E. Ramírez-Poussa. “Identifying Non-Sublattice Equivalence Classes Induced by an Attribute Reduction in FCA”. In: Mathematics 9.5 (Mar. 2021), p. 565. ISSN: 2227-7390. DOI: 10.3390/math9050565. URL: http://dx.doi.org/10.3390/math9050565.
[4] F. Benito‐Picazo, M. Enciso, C. Rossi, et al. “Enhancing the conversational process by using a logical closure operator in phenotypes implications”. In: Mathematical Methods in the Applied Sciences 41.3 (Feb. 2017), p. 1089–1100. ISSN: 1099-1476. DOI: 10.1002/mma.4338. URL: http://dx.doi.org/10.1002/mma.4338.
[5] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.
[6] P. Cordero, M. Enciso, Á. Mora, et al. “A Formal Concept Analysis Approach to Cooperative Conversational Recommendation”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 1243. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200806.001. URL: http://dx.doi.org/10.2991/ijcis.d.200806.001.
[7] P. Cordero, M. Enciso, A. Mora, et al. “Parameterized simplification logic I: reasoning with implications and classes of closure operators”. In: International Journal of General Systems 49.7 (Oct. 2020), p. 724–746. ISSN: 1563-5104. DOI: 10.1080/03081079.2020.1831484. URL: http://dx.doi.org/10.1080/03081079.2020.1831484.
[8] D. Dubois, J. Medina, H. Prade, et al. “Disjunctive attribute dependencies in formal concept analysis under the epistemic view of formal contexts”. In: Information Sciences 561 (Jun. 2021), p. 31–51. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.12.085. URL: http://dx.doi.org/10.1016/j.ins.2020.12.085.
[9] C. Huang, B. Hu, G. Jiang, et al. “Modeling of agent-based complex network under cyber-violence”. In: Physica A: Statistical Mechanics and its Applications 458 (Sep. 2016), p. 399–411. ISSN: 0378-4371. DOI: 10.1016/j.physa.2016.03.066. URL: http://dx.doi.org/10.1016/j.physa.2016.03.066.
[10] H. Jelodar, Y. Wang, M. Rabbani, et al. “A NLP framework based on meaningful latent-topic detection and sentiment analysis via fuzzy lattice reasoning on youtube comments”. In: Multimedia Tools and Applications 80.3 (Sep. 2020), p. 4155–4181. ISSN: 1573-7721. DOI: 10.1007/s11042-020-09755-z. URL: http://dx.doi.org/10.1007/s11042-020-09755-z.
[11] F. Kardoš, J. Pócs, and J. Pócsová. “On concept reduction based on some graph properties”. In: Knowledge-Based Systems 93 (Feb. 2016), p. 67–74. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2015.11.003. URL: http://dx.doi.org/10.1016/j.knosys.2015.11.003.
[12] T. Liu, H. Zhang, and H. Zhang. “The Impact of Social Media on Risk Communication of Disasters—A Comparative Study Based on Sina Weibo Blogs Related to Tianjin Explosion and Typhoon Pigeon”. In: International Journal of Environmental Research and Public Health 17.3 (Jan. 2020), p. 883. ISSN: 1660-4601. DOI: 10.3390/ijerph17030883. URL: http://dx.doi.org/10.3390/ijerph17030883.
[13] X. Luo. “The Logic of Homophily Dynamics in Heterogeneous Networks: Axiomatization, Model Checking and Validity Checking”. In: Mathematics 11.16 (Aug. 2023), p. 3484. ISSN: 2227-7390. DOI: 10.3390/math11163484. URL: http://dx.doi.org/10.3390/math11163484.
[14] A. Majeed and I. Rauf. “Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social Networks”. In: Inventions 5.1 (Feb. 2020), p. 10. ISSN: 2411-5134. DOI: 10.3390/inventions5010010. URL: http://dx.doi.org/10.3390/inventions5010010.
[15] J. Mangaiyarkkarasi, J. Shanthalakshmi Revathy, and S. Mehta. “Introduction to Graph Theory”. In: Neural Networks and Graph Models for Traffic and Energy Systems. IGI Global, Feb. 2025, p. 65–82. ISBN: 9798337302928. DOI: 10.4018/979-8-3373-0290-4.ch003. URL: http://dx.doi.org/10.4018/979-8-3373-0290-4.ch003.
[16] J. Medina, K. Pakhomova, and E. Ramirez-Poussa. “Interpreting and analyzing a location-based social network by fuzzy formal contexts”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–6. DOI: 10.1109/ssci.2017.8285282. URL: http://dx.doi.org/10.1109/ssci.2017.8285282.
[17] J. Medina, K. Pakhomova, and E. Ramírez-Poussa. “Recommendation Solution for a Locate-Based Social Network via Formal Concept Analysis”. In: Trends in Mathematics and Computational Intelligence. Springer International Publishing, Oct. 2018, p. 131–138. ISBN: 9783030004859. DOI: 10.1007/978-3-030-00485-9_15. URL: http://dx.doi.org/10.1007/978-3-030-00485-9_15.
[18] S. M. Neto, S. Dias, R. Missaoui, et al. “Identification of substructures in complex networks using formal concept analysis”. In: International Journal of Web Information Systems 14.3 (Aug. 2018), p. 281–298. ISSN: 1744-0084. DOI: 10.1108/ijwis-10-2017-0067. URL: http://dx.doi.org/10.1108/ijwis-10-2017-0067.
[19] M. Ojeda-Hernández, I. P. Cabrera, and P. Cordero. “Quasi-closed elements in fuzzy posets”. In: Journal of Computational and Applied Mathematics 404 (Apr. 2022), p. 113390. ISSN: 0377-0427. DOI: 10.1016/j.cam.2021.113390. URL: http://dx.doi.org/10.1016/j.cam.2021.113390.
[20] F. Pérez-Gámez, P. Cordero, M. Enciso, et al. “Computing the Mixed Concept Lattice”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2022, p. 87–99. ISBN: 9783031089718. DOI: 10.1007/978-3-031-08971-8_8. URL: http://dx.doi.org/10.1007/978-3-031-08971-8_8.
[21] P. Raissa, S. Dias, M. Song, et al. “Minimal implications base for social network analysis”. In: International Journal of Web Information Systems 14.1 (Apr. 2018), p. 62–77. ISSN: 1744-0084. DOI: 10.1108/ijwis-04-2017-0028. URL: http://dx.doi.org/10.1108/ijwis-04-2017-0028.
[22] E. Rodríguez-Lorenzo, P. Cordero, M. Enciso, et al. “Canonical dichotomous direct bases”. In: Information Sciences 376 (Jan. 2017), p. 39–53. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.10.004. URL: http://dx.doi.org/10.1016/j.ins.2016.10.004.
[23] P. R. Silva, S. M. Dias, W. C. Brandão, et al. “Professional Competence Identification Through Formal Concept Analysis”. In: Enterprise Information Systems. Springer International Publishing, 2018, p. 34–56. ISBN: 9783319933757. DOI: 10.1007/978-3-319-93375-7_3. URL: http://dx.doi.org/10.1007/978-3-319-93375-7_3.
[24] S. S. Singh, S. Muhuri, S. Mishra, et al. “Social Network Analysis: A Survey on Process, Tools, and Application”. In: ACM Computing Surveys 56.8 (Apr. 2024), p. 1–39. ISSN: 1557-7341. DOI: 10.1145/3648470. URL: http://dx.doi.org/10.1145/3648470.
[25] Y. Zhou, J. Li, H. Yang, et al. “Knowledge structures construction and learning paths recommendation based on formal contexts”. In: International Journal of Machine Learning and Cybernetics 15.4 (Oct. 2023), p. 1605–1620. ISSN: 1868-808X. DOI: 10.1007/s13042-023-01985-5. URL: http://dx.doi.org/10.1007/s13042-023-01985-5.
