On residuation in multilattices: Filters, congruences, and homomorphisms
Abstract
Citation
Please, cite this work as:
[Cab+14] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets Syst. 234 (2014), pp. 1-21. DOI: 10.1016/J.FSS.2013.04.002. URL: https://doi.org/10.1016/j.fss.2013.04.002.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] S. Ajjarapu, R. Bandaru, R. R. Kotha, et al. “Topological Properties of Prime Filters and Minimal Prime Filters on a Paradistributive Latticoid”. In: International Journal of Mathematics and Mathematical Sciences 2024.1 (Jan. 2024). Ed. by A. Saleh Alwardi. ISSN: 1687-0425. DOI: 10.1155/ijmm/1862245. URL: http://dx.doi.org/10.1155/ijmm/1862245.
[2] L. Antoni, S. Krajči, and O. Krídlo. “Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 21–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2015.12.007. URL: http://dx.doi.org/10.1016/j.fss.2015.12.007.
[3] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.
[4] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.
[5] L. Antoni, S. Krajči, and O. Krídlo. “Randomized Fuzzy Formal Contexts and Relevance of One-Sided Concepts”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 183–199. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_12. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_12.
[6] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[7] D. C. Awouafack and E. Fouotsa. “The Properties of Maximal Filters in Multilattices”. In: Journal of Mathematics 2022.1 (Jan. 2022). Ed. by F. Mynard. ISSN: 2314-4785. DOI: 10.1155/2022/9714656. URL: http://dx.doi.org/10.1155/2022/9714656.
[8] D. C. Awouafack, B. B. Koguep Njionou, and C. Lélé. “The Prime Filter Theorem for Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Apr. 2022). Ed. by F. Mynard, p. 1–5. ISSN: 0161-1712. DOI: 10.1155/2022/8060503. URL: http://dx.doi.org/10.1155/2022/8060503.
[9] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.
[10] M. E. Cornejo, D. Lobo, and J. Medina. “Solving Generalized Equations with Bounded Variables and Multiple Residuated Operators”. In: Mathematics 8.11 (Nov. 2020), p. 1992. ISSN: 2227-7390. DOI: 10.3390/math8111992. URL: http://dx.doi.org/10.3390/math8111992.
[11] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint negations, more than residuated negations”. In: Information Sciences 345 (Jun. 2016), p. 355–371. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.01.038. URL: http://dx.doi.org/10.1016/j.ins.2016.01.038.
[12] L. É. Diékouam Fotso, C. P. Kengne, and D. C. Awouafack. “Fuzzy prime filter theorem in multilattices”. In: Fuzzy Sets and Systems 497 (Dec. 2024), p. 109148. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109148. URL: http://dx.doi.org/10.1016/j.fss.2024.109148.
[13] G. N. Dongmo, B. B. K. NJIONOU, L. Kwuida, et al. Residuated Multilattice as set of Truth Values for Fuzzy Rough Sets. 2020. DOI: 10.48550/ARXIV.2008.03690. URL: https://arxiv.org/abs/2008.03690.
[14] B. B. Koguep Njionou, L. Kwuida, and C. Lele. “Formal Concepts and Residuation on Multilattices”. In: Fundamenta Informaticae 188.4 (Jun. 2023), p. 217–237. ISSN: 1875-8681. DOI: 10.3233/fi-222147. URL: http://dx.doi.org/10.3233/fi-222147.
[15] O. Krídlo, S. Krajči, and L. Antoni. “Formal concept analysis of higher order”. In: International Journal of General Systems 45.2 (Jan. 2016), p. 116–134. ISSN: 1563-5104. DOI: 10.1080/03081079.2015.1072924. URL: http://dx.doi.org/10.1080/03081079.2015.1072924.
[16] L. N. Maffeu, C. Lele, J. B. Nganou, et al. “Multiplicative and implicative derivations on residuated multilattices”. In: Soft Computing 23.23 (Jun. 2019), p. 12199–12208. ISSN: 1433-7479. DOI: 10.1007/s00500-019-04184-z. URL: http://dx.doi.org/10.1007/s00500-019-04184-z.
[17] J. Medina, M. Ojeda-Aciego, J. Pócs, et al. “On the Dedekind–MacNeille completion and formal concept analysis based on multilattices”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 1–20. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.01.007. URL: http://dx.doi.org/10.1016/j.fss.2016.01.007.
[18] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Multilattice as the set of truth values for fuzzy rough sets”. In: Journal of Applied Non-Classical Logics (Jul. 2024), p. 1–20. ISSN: 1958-5780. DOI: 10.1080/11663081.2024.2373016. URL: http://dx.doi.org/10.1080/11663081.2024.2373016.
[19] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Rough Fuzzy Concept Analysis via Multilattice”. In: Rough Sets. Springer Nature Switzerland, 2023, p. 495–508. ISBN: 9783031509599. DOI: 10.1007/978-3-031-50959-9_34. URL: http://dx.doi.org/10.1007/978-3-031-50959-9_34.
[20] G. Nguepy Dongmo, B. Koguep Njionou, L. Kwuida, et al. “Roughness in formal concept analysis via multilattices”. In: Fuzzy Sets and Systems 500 (Jan. 2025), p. 109179. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109179. URL: http://dx.doi.org/10.1016/j.fss.2024.109179.
[21] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.
[22] Y. Xu, L. Liu, and X. Zhang. “Multilattices on typical hesitant fuzzy sets”. In: Information Sciences 491 (Jul. 2019), p. 63–73. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.03.078. URL: http://dx.doi.org/10.1016/j.ins.2019.03.078.
[23] D. L. K. Yemene, L. E. D. Fotso, and C. Lele. “(f, g)-derivation in residuated multilattices”. In: Soft Computing 26.17 (Jul. 2022), p. 8221–8228. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07238-x. URL: http://dx.doi.org/10.1007/s00500-022-07238-x.