On residuation in multilattices: Filters, congruences, and homomorphisms

uncategorised
Authors

Inma P. Cabrera

Pablo Cordero

Gloria Gutiérrez

Javier Martínez

Manuel Ojeda-Aciego

Published

1 January 2014

Publication details

Fuzzy Sets Syst. vol. 234 , pages 1–21.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Cab+14] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets Syst. 234 (2014), pp. 1-21. DOI: 10.1016/J.FSS.2013.04.002. URL: https://doi.org/10.1016/j.fss.2013.04.002.

@Article{Cabrera2014,
     author = {Inma P. Cabrera and Pablo Cordero and Gloria Guti{’e}rrez and Javier Mart'and Manuel Ojeda-Aciego},
     journal = {Fuzzy Sets Syst.},
     title = {On residuation in multilattices: Filters, congruences, and homomorphisms},
     year = {2014},
     pages = {1–21},
     volume = {234},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/fss/CabreraCGMO14.bib},
     doi = {10.1016/J.FSS.2013.04.002},
     timestamp = {Tue, 29 Aug 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.fss.2013.04.002},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 22
  • Scopus - Citation Indexes: 24
  • Captures
  • Mendeley - Readers: 9

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

2024202320222021202020192018201720162015201401234
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] S. Ajjarapu, R. Bandaru, R. R. Kotha, et al. “Topological Properties of Prime Filters and Minimal Prime Filters on a Paradistributive Latticoid”. In: International Journal of Mathematics and Mathematical Sciences 2024.1 (Jan. 2024). Ed. by A. Saleh Alwardi. ISSN: 1687-0425. DOI: 10.1155/ijmm/1862245. URL: http://dx.doi.org/10.1155/ijmm/1862245.

[2] L. Antoni, S. Krajči, and O. Krídlo. “Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 21–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2015.12.007. URL: http://dx.doi.org/10.1016/j.fss.2015.12.007.

[3] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.

[4] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.

[5] L. Antoni, S. Krajči, and O. Krídlo. “Randomized Fuzzy Formal Contexts and Relevance of One-Sided Concepts”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 183–199. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_12. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_12.

[6] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.

[7] D. C. Awouafack and E. Fouotsa. “The Properties of Maximal Filters in Multilattices”. In: Journal of Mathematics 2022.1 (Jan. 2022). Ed. by F. Mynard. ISSN: 2314-4785. DOI: 10.1155/2022/9714656. URL: http://dx.doi.org/10.1155/2022/9714656.

[8] D. C. Awouafack, B. B. Koguep Njionou, and C. Lélé. “The Prime Filter Theorem for Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Apr. 2022). Ed. by F. Mynard, p. 1–5. ISSN: 0161-1712. DOI: 10.1155/2022/8060503. URL: http://dx.doi.org/10.1155/2022/8060503.

[9] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.

[10] M. E. Cornejo, D. Lobo, and J. Medina. “Solving Generalized Equations with Bounded Variables and Multiple Residuated Operators”. In: Mathematics 8.11 (Nov. 2020), p. 1992. ISSN: 2227-7390. DOI: 10.3390/math8111992. URL: http://dx.doi.org/10.3390/math8111992.

[11] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint negations, more than residuated negations”. In: Information Sciences 345 (Jun. 2016), p. 355–371. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.01.038. URL: http://dx.doi.org/10.1016/j.ins.2016.01.038.

[12] L. É. Diékouam Fotso, C. P. Kengne, and D. C. Awouafack. “Fuzzy prime filter theorem in multilattices”. In: Fuzzy Sets and Systems 497 (Dec. 2024), p. 109148. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109148. URL: http://dx.doi.org/10.1016/j.fss.2024.109148.

[13] G. N. Dongmo, B. B. K. NJIONOU, L. Kwuida, et al. Residuated Multilattice as set of Truth Values for Fuzzy Rough Sets. 2020. DOI: 10.48550/ARXIV.2008.03690. URL: https://arxiv.org/abs/2008.03690.

[14] B. B. Koguep Njionou, L. Kwuida, and C. Lele. “Formal Concepts and Residuation on Multilattices”. In: Fundamenta Informaticae 188.4 (Jun. 2023), p. 217–237. ISSN: 1875-8681. DOI: 10.3233/fi-222147. URL: http://dx.doi.org/10.3233/fi-222147.

[15] O. Krídlo, S. Krajči, and L. Antoni. “Formal concept analysis of higher order”. In: International Journal of General Systems 45.2 (Jan. 2016), p. 116–134. ISSN: 1563-5104. DOI: 10.1080/03081079.2015.1072924. URL: http://dx.doi.org/10.1080/03081079.2015.1072924.

[16] L. N. Maffeu, C. Lele, J. B. Nganou, et al. “Multiplicative and implicative derivations on residuated multilattices”. In: Soft Computing 23.23 (Jun. 2019), p. 12199–12208. ISSN: 1433-7479. DOI: 10.1007/s00500-019-04184-z. URL: http://dx.doi.org/10.1007/s00500-019-04184-z.

[17] J. Medina, M. Ojeda-Aciego, J. Pócs, et al. “On the Dedekind–MacNeille completion and formal concept analysis based on multilattices”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 1–20. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.01.007. URL: http://dx.doi.org/10.1016/j.fss.2016.01.007.

[18] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Multilattice as the set of truth values for fuzzy rough sets”. In: Journal of Applied Non-Classical Logics (Jul. 2024), p. 1–20. ISSN: 1958-5780. DOI: 10.1080/11663081.2024.2373016. URL: http://dx.doi.org/10.1080/11663081.2024.2373016.

[19] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Rough Fuzzy Concept Analysis via Multilattice”. In: Rough Sets. Springer Nature Switzerland, 2023, p. 495–508. ISBN: 9783031509599. DOI: 10.1007/978-3-031-50959-9_34. URL: http://dx.doi.org/10.1007/978-3-031-50959-9_34.

[20] G. Nguepy Dongmo, B. Koguep Njionou, L. Kwuida, et al. “Roughness in formal concept analysis via multilattices”. In: Fuzzy Sets and Systems 500 (Jan. 2025), p. 109179. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109179. URL: http://dx.doi.org/10.1016/j.fss.2024.109179.

[21] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.

[22] Y. Xu, L. Liu, and X. Zhang. “Multilattices on typical hesitant fuzzy sets”. In: Information Sciences 491 (Jul. 2019), p. 63–73. ISSN: 0020-0255. DOI: 10.1016/j.ins.2019.03.078. URL: http://dx.doi.org/10.1016/j.ins.2019.03.078.

[23] D. L. K. Yemene, L. E. D. Fotso, and C. Lele. “(f, g)-derivation in residuated multilattices”. In: Soft Computing 26.17 (Jul. 2022), p. 8221–8228. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07238-x. URL: http://dx.doi.org/10.1007/s00500-022-07238-x.