On the definition of suitable orderings to generate adjunctions over an unstructured codomain
Abstract
Citation
Please, cite this work as:
[Gar+14] F. Garc'-Pardo, I. P. Cabrera, P. Cordero, et al. “On the definition of suitable orderings to generate adjunctions over an unstructured codomain”. In: Inf. Sci. 286 (2014), pp. 173-187. DOI: 10.1016/J.INS.2014.07.006. URL: https://doi.org/10.1016/j.ins.2014.07.006.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.
[2] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.
[3] L. Antoni, S. Krajči, and O. Krídlo. “Randomized Fuzzy Formal Contexts and Relevance of One-Sided Concepts”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 183–199. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_12. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_12.
[4] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[5] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.
[6] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “A Relational Extension of Galois Connections”. In: Formal Concept Analysis. Springer International Publishing, 2019, p. 290–303. ISBN: 9783030214623. DOI: 10.1007/978-3-030-21462-3_19. URL: http://dx.doi.org/10.1007/978-3-030-21462-3_19.
[7] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Galois Connections Between Unbalanced Structures in a Fuzzy Framework”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2020, p. 736–747. ISBN: 9783030501532. DOI: 10.1007/978-3-030-50153-2_54. URL: http://dx.doi.org/10.1007/978-3-030-50153-2_54.
[8] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Towards fuzzy relational Galois connections between fuzzy T-digraphs”. In: Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). eusflat-19. Atlantis Press, 2019. DOI: 10.2991/eusflat-19.2019.112. URL: http://dx.doi.org/10.2991/eusflat-19.2019.112.
[9] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Galois connections between transitive digraphs: Characterization and construction”. In: Information Sciences 519 (May. 2020), p. 439–450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.01.034. URL: http://dx.doi.org/10.1016/j.ins.2020.01.034.
[10] I. P. Cabrera, P. Cordero, E. Muñoz‐Velasco, et al. “Relational Galois connections between transitive fuzzy digraphs”. In: Mathematical Methods in the Applied Sciences 43.9 (Feb. 2020), p. 5673–5680. ISSN: 1099-1476. DOI: 10.1002/mma.6302. URL: http://dx.doi.org/10.1002/mma.6302.
[11] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “On fuzzy relations, adjunctions, and functional fuzzy relations”. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2016, p. 1–7. DOI: 10.1109/ssci.2016.7850149. URL: http://dx.doi.org/10.1109/ssci.2016.7850149.
[12] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Relational fuzzy Galois connections”. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Jun. 2017, p. 1–6. DOI: 10.1109/ifsa-scis.2017.8023288. URL: http://dx.doi.org/10.1109/ifsa-scis.2017.8023288.
[13] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Towards relational fuzzy adjunctions”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–5. DOI: 10.1109/fuzz-ieee.2017.8015677. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015677.
[14] I. Cabrera, P. Cordero, F. García-Pardo, et al. “On the construction of adjunctions between a fuzzy preposet and an unstructured set”. In: Fuzzy Sets and Systems 320 (Aug. 2017), p. 81–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.09.013. URL: http://dx.doi.org/10.1016/j.fss.2016.09.013.
[15] I. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Fuzzy relational Galois connections between fuzzy transitive digraphs”. In: Fuzzy Sets and Systems 463 (Jul. 2023), p. 108456. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.12.012. URL: http://dx.doi.org/10.1016/j.fss.2022.12.012.
[16] I. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Galois connections in computational intelligence: A short survey”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–7. DOI: 10.1109/ssci.2017.8285310. URL: http://dx.doi.org/10.1109/ssci.2017.8285310.
[17] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Implication operators generating pairs of weak negations and their algebraic structure”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 18–39. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.008. URL: http://dx.doi.org/10.1016/j.fss.2020.01.008.
[18] C. De Maio, G. Fenza, V. Loia, et al. “Online query-focused twitter summarizer through fuzzy lattice”. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Aug. 2015, p. 1–8. DOI: 10.1109/fuzz-ieee.2015.7337927. URL: http://dx.doi.org/10.1109/fuzz-ieee.2015.7337927.
[19] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Closure Systems and Adjunctions Between Fuzzy Preordered Sets”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 114–127. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_7. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_7.