On the definition of suitable orderings to generate adjunctions over an unstructured codomain

uncategorised
Authors

Francisca García-Pardo

Inma P. Cabrera

Pablo Cordero

Manuel Ojeda-Aciego

Francisco J. Rodríguez-Sanchez

Published

1 January 2014

Publication details

Inf. Sci. vol. 286 , pages 173–187.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Gar+14] F. Garc'-Pardo, I. P. Cabrera, P. Cordero, et al. “On the definition of suitable orderings to generate adjunctions over an unstructured codomain”. In: Inf. Sci. 286 (2014), pp. 173-187. DOI: 10.1016/J.INS.2014.07.006. URL: https://doi.org/10.1016/j.ins.2014.07.006.

@Article{GarciaPardo2014,
     author = {Francisca Garc'-Pardo and Inma P. Cabrera and Pablo Cordero and Manuel Ojeda-Aciego and Francisco J. Rodr'-Sanchez},
     journal = {Inf. Sci.},
     title = {On the definition of suitable orderings to generate adjunctions over an unstructured codomain},
     year = {2014},
     pages = {173–187},
     volume = {286},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/isci/Garcia-PardoCCOR14.bib},
     doi = {10.1016/J.INS.2014.07.006},
     timestamp = {Sat, 30 Sep 2023 01:00:00 +0200},
     url = {https://doi.org/10.1016/j.ins.2014.07.006},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 8
  • Scopus - Citation Indexes: 22
  • Captures
  • Mendeley - Readers: 9
  • Social Media
  • Facebook - Shares, Likes & Comments: 3

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202220202019201820172016201520140246
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.

[2] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.

[3] L. Antoni, S. Krajči, and O. Krídlo. “Randomized Fuzzy Formal Contexts and Relevance of One-Sided Concepts”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 183–199. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_12. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_12.

[4] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.

[5] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.

[6] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “A Relational Extension of Galois Connections”. In: Formal Concept Analysis. Springer International Publishing, 2019, p. 290–303. ISBN: 9783030214623. DOI: 10.1007/978-3-030-21462-3_19. URL: http://dx.doi.org/10.1007/978-3-030-21462-3_19.

[7] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Galois Connections Between Unbalanced Structures in a Fuzzy Framework”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2020, p. 736–747. ISBN: 9783030501532. DOI: 10.1007/978-3-030-50153-2_54. URL: http://dx.doi.org/10.1007/978-3-030-50153-2_54.

[8] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Towards fuzzy relational Galois connections between fuzzy T-digraphs”. In: Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). eusflat-19. Atlantis Press, 2019. DOI: 10.2991/eusflat-19.2019.112. URL: http://dx.doi.org/10.2991/eusflat-19.2019.112.

[9] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Galois connections between transitive digraphs: Characterization and construction”. In: Information Sciences 519 (May. 2020), p. 439–450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.01.034. URL: http://dx.doi.org/10.1016/j.ins.2020.01.034.

[10] I. P. Cabrera, P. Cordero, E. Muñoz‐Velasco, et al. “Relational Galois connections between transitive fuzzy digraphs”. In: Mathematical Methods in the Applied Sciences 43.9 (Feb. 2020), p. 5673–5680. ISSN: 1099-1476. DOI: 10.1002/mma.6302. URL: http://dx.doi.org/10.1002/mma.6302.

[11] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “On fuzzy relations, adjunctions, and functional fuzzy relations”. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2016, p. 1–7. DOI: 10.1109/ssci.2016.7850149. URL: http://dx.doi.org/10.1109/ssci.2016.7850149.

[12] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Relational fuzzy Galois connections”. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Jun. 2017, p. 1–6. DOI: 10.1109/ifsa-scis.2017.8023288. URL: http://dx.doi.org/10.1109/ifsa-scis.2017.8023288.

[13] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Towards relational fuzzy adjunctions”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–5. DOI: 10.1109/fuzz-ieee.2017.8015677. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015677.

[14] I. Cabrera, P. Cordero, F. García-Pardo, et al. “On the construction of adjunctions between a fuzzy preposet and an unstructured set”. In: Fuzzy Sets and Systems 320 (Aug. 2017), p. 81–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.09.013. URL: http://dx.doi.org/10.1016/j.fss.2016.09.013.

[15] I. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Fuzzy relational Galois connections between fuzzy transitive digraphs”. In: Fuzzy Sets and Systems 463 (Jul. 2023), p. 108456. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.12.012. URL: http://dx.doi.org/10.1016/j.fss.2022.12.012.

[16] I. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Galois connections in computational intelligence: A short survey”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–7. DOI: 10.1109/ssci.2017.8285310. URL: http://dx.doi.org/10.1109/ssci.2017.8285310.

[17] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Implication operators generating pairs of weak negations and their algebraic structure”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 18–39. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.008. URL: http://dx.doi.org/10.1016/j.fss.2020.01.008.

[18] C. De Maio, G. Fenza, V. Loia, et al. “Online query-focused twitter summarizer through fuzzy lattice”. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Aug. 2015, p. 1–8. DOI: 10.1109/fuzz-ieee.2015.7337927. URL: http://dx.doi.org/10.1109/fuzz-ieee.2015.7337927.

[19] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Closure Systems and Adjunctions Between Fuzzy Preordered Sets”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 114–127. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_7. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_7.