On multi-adjoint concept lattices based on heterogeneous conjunctors
Abstract
Citation
Please, cite this work as:
[MO12] J. Medina and M. Ojeda-Aciego. “On multi-adjoint concept lattices based on heterogeneous conjunctors”. In: Fuzzy Sets Syst. 208 (2012), pp. 95-110. DOI: 10.1016/J.FSS.2012.02.008. URL: https://doi.org/10.1016/j.fss.2012.02.008.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] Ľ. Antoni, P. Eliaš, J. Guniš, et al. “Bimorphisms and attribute implications in heterogeneous formal contexts”. In: International Journal of Approximate Reasoning 172 (Sep. 2024), p. 109245. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2024.109245. URL: http://dx.doi.org/10.1016/j.ijar.2024.109245.
[2] L. Antoni, S. Krajči, and O. Krídlo. “Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 21–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2015.12.007. URL: http://dx.doi.org/10.1016/j.fss.2015.12.007.
[3] L. Antoni, S. Krajči, and O. Krídlo. “On stability of fuzzy formal concepts over randomized one-sided formal context”. In: Fuzzy Sets and Systems 333 (Feb. 2018), p. 36–53. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.04.006. URL: http://dx.doi.org/10.1016/j.fss.2017.04.006.
[4] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[5] L. Antoni, S. Krajči, O. Krídlo, et al. “On heterogeneous formal contexts”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 22–33. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.008. URL: http://dx.doi.org/10.1016/j.fss.2013.04.008.
[6] P. Butka, J. Pócs, and J. Pócsová. “On equivalence of conceptual scaling and generalized one-sided concept lattices”. In: Information Sciences 259 (Feb. 2014), p. 57–70. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.08.047. URL: http://dx.doi.org/10.1016/j.ins.2013.08.047.
[7] M. E. Cornejo, J. Medina-Moreno, and E. Ramírez. “On the Classification of Fuzzy-Attributes in Multi-adjoint Concept Lattices”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2013, p. 266–277. ISBN: 9783642386824. DOI: 10.1007/978-3-642-38682-4_30. URL: http://dx.doi.org/10.1007/978-3-642-38682-4_30.
[8] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint negations, more than residuated negations”. In: Information Sciences 345 (Jun. 2016), p. 355–371. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.01.038. URL: http://dx.doi.org/10.1016/j.ins.2016.01.038.
[9] J. Díaz-Moreno, J. Medina, and M. Ojeda-Aciego. “On basic conditions to generate multi-adjoint concept lattices via Galois connections”. In: International Journal of General Systems 43.2 (Jan. 2014), p. 149–161. ISSN: 1563-5104. DOI: 10.1080/03081079.2013.879302. URL: http://dx.doi.org/10.1080/03081079.2013.879302.
[10] D. Dubois and H. Prade. “Bridging gaps between several forms of granular computing”. In: Granular Computing 1.2 (Jan. 2016), p. 115–126. ISSN: 2364-4974. DOI: 10.1007/s41066-015-0008-8. URL: http://dx.doi.org/10.1007/s41066-015-0008-8.
[11] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Galois Connections and Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2013, p. 224–235. ISBN: 9783642386824. DOI: 10.1007/978-3-642-38682-4_26. URL: http://dx.doi.org/10.1007/978-3-642-38682-4_26.
[12] R. Halaš and J. Pócs. “Generalized one-sided concept lattices with attribute preferences”. In: Information Sciences 303 (May. 2015), p. 50–60. ISSN: 0020-0255. DOI: 10.1016/j.ins.2015.01.009. URL: http://dx.doi.org/10.1016/j.ins.2015.01.009.
[13] J. Konecny, J. Medina, and M. Ojeda-Aciego. “Multi-adjoint concept lattices with heterogeneous conjunctors and hedges”. In: Annals of Mathematics and Artificial Intelligence 72.1–2 (Mar. 2014), p. 73–89. ISSN: 1573-7470. DOI: 10.1007/s10472-014-9405-y. URL: http://dx.doi.org/10.1007/s10472-014-9405-y.
[14] O. Krídlo, S. Krajči, and L. Antoni. “Formal concept analysis of higher order”. In: International Journal of General Systems 45.2 (Jan. 2016), p. 116–134. ISSN: 1563-5104. DOI: 10.1080/03081079.2015.1072924. URL: http://dx.doi.org/10.1080/03081079.2015.1072924.
[15] O. Krídlo and M. Ojeda-Aciego. “Revising the link between L-Chu correspondences and completely lattice L-ordered sets”. In: Annals of Mathematics and Artificial Intelligence 72.1–2 (Apr. 2014), p. 91–113. ISSN: 1573-7470. DOI: 10.1007/s10472-014-9416-8. URL: http://dx.doi.org/10.1007/s10472-014-9416-8.
[16] P. K. Singh. “Concept lattice visualization of data with m-polar fuzzy attribute”. In: Granular Computing 3.2 (Nov. 2017), p. 123–137. ISSN: 2364-4974. DOI: 10.1007/s41066-017-0060-7. URL: http://dx.doi.org/10.1007/s41066-017-0060-7.
[17] P. K. Singh. “m -polar fuzzy graph representation of concept lattice”. In: Engineering Applications of Artificial Intelligence 67 (Jan. 2018), p. 52–62. ISSN: 0952-1976. DOI: 10.1016/j.engappai.2017.09.011. URL: http://dx.doi.org/10.1016/j.engappai.2017.09.011.
[18] P. K. Singh. “Object and attribute oriented m-polar fuzzy concept lattice using the projection operator”. In: Granular Computing 4.3 (Jul. 2018), p. 545–558. ISSN: 2364-4974. DOI: 10.1007/s41066-018-0117-2. URL: http://dx.doi.org/10.1007/s41066-018-0117-2.
[19] P. K. Singh and C. Aswani Kumar. “Bipolar fuzzy graph representation of concept lattice”. In: Information Sciences 288 (Dec. 2014), p. 437–448. ISSN: 0020-0255. DOI: 10.1016/j.ins.2014.07.038. URL: http://dx.doi.org/10.1016/j.ins.2014.07.038.
[20] P. K. Singh, C. Aswani Kumar, and A. Gani. “A comprehensive survey on formal concept analysis, its research trends and applications”. In: International Journal of Applied Mathematics and Computer Science 26.2 (Jun. 2016), p. 495–516. ISSN: 2083-8492. DOI: 10.1515/amcs-2016-0035. URL: http://dx.doi.org/10.1515/amcs-2016-0035.
[21] P. K. Singh, C. Aswani Kumar, and J. Li. “Knowledge representation using interval-valued fuzzy formal concept lattice”. In: Soft Computing 20.4 (Feb. 2015), p. 1485–1502. ISSN: 1433-7479. DOI: 10.1007/s00500-015-1600-1. URL: http://dx.doi.org/10.1007/s00500-015-1600-1.
[22] P. K. Singh and A. K. Ch. “A Note on Constructing Fuzzy Homomorphism Map for a Given Fuzzy Formal Context”. In: Proceedings of the Third International Conference on Soft Computing for Problem Solving. Springer India, 2014, p. 845–855. ISBN: 9788132217718. DOI: 10.1007/978-81-322-1771-8_73. URL: http://dx.doi.org/10.1007/978-81-322-1771-8_73.
[23] P. K. Singh and C. A. Kumar. “Interval-valued fuzzy graph representation of concept lattice”. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, Nov. 2012, p. 604–609. DOI: 10.1109/isda.2012.6416606. URL: http://dx.doi.org/10.1109/isda.2012.6416606.
[24] V. Vychodil. “Parameterizing the Semantics of Fuzzy Attribute Implications by Systems of Isotone Galois Connections”. In: IEEE Transactions on Fuzzy Systems 24.3 (Jun. 2016), p. 645–660. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2015.2470530. URL: http://dx.doi.org/10.1109/tfuzz.2015.2470530.
