Fuzzy congruence relations on nd-groupoids
Abstract
In this work we introduce the notion of fuzzy congruence relation on an nd-groupoid and study conditions on the nd-groupoid that guarantee a complete lattice structure on the set of fuzzy congruence relations. The study of these conditions allowed to construct a counterexample to the statement that the set of fuzzy congruences on a hypergroupoid is a complete lattice.
Citation
Please, cite this work as:
[Cab+09] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Fuzzy congruence relations on nd-groupoids”. In: Int. J. Comput. Math. 86.10&11 (2009), pp. 1684-1695. DOI: 10.1080/00207160902721797. URL: https://doi.org/10.1080/00207160902721797.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.
[2] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.
[3] P. Cordero, M. Enciso, A. Mora, et al. “A Complete Logic for Fuzzy Functional Dependencies over Domains with Similarity Relations”. In: Bio-Inspired Systems: Computational and Ambient Intelligence. Springer Berlin Heidelberg, 2009, p. 261–269. ISBN: 9783642024788. DOI: 10.1007/978-3-642-02478-8_33. URL: http://dx.doi.org/10.1007/978-3-642-02478-8_33.
[4] E. Hendukolaii. “On Fuzzy Homomorphisms Between Hypernear-rings”. In: Journal of Mathematics and Computer Science 02.04 (May. 2011), p. 702–716. ISSN: 2008-949X. DOI: 10.22436/jmcs.02.04.16. URL: http://dx.doi.org/10.22436/jmcs.02.04.16.
[5] B. B. N. Koguep and C. Lele. “Weak-hyperlattices derived from fuzzy congruences”. In: Discussiones Mathematicae - General Algebra and Applications 37.1 (2017), p. 75. ISSN: 2084-0373. DOI: 10.7151/dmgaa.1260. URL: http://dx.doi.org/10.7151/dmgaa.1260.
[6] A. Mora, P. Cordero, M. Enciso, et al. “Closure via functional dependence simplification”. In: International Journal of Computer Mathematics 89.4 (Mar. 2012), p. 510–526. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.644275. URL: http://dx.doi.org/10.1080/00207160.2011.644275.
[7] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.