Fuzzy congruence relations on nd-groupoids

uncategorised
Authors

Inma P. Cabrera

Pablo Cordero

Gloria Gutiérrez

Javier Martínez

Manuel Ojeda-Aciego

Published

1 January 2009

Publication details

Int. J. Comput. Math. vol. 86 (10{&}11), pages 1684–1695.

Links

DOI

 

Abstract

In this work we introduce the notion of fuzzy congruence relation on an nd-groupoid and study conditions on the nd-groupoid that guarantee a complete lattice structure on the set of fuzzy congruence relations. The study of these conditions allowed to construct a counterexample to the statement that the set of fuzzy congruences on a hypergroupoid is a complete lattice.

Citation

Please, cite this work as:

[Cab+09] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Fuzzy congruence relations on nd-groupoids”. In: Int. J. Comput. Math. 86.10&11 (2009), pp. 1684-1695. DOI: 10.1080/00207160902721797. URL: https://doi.org/10.1080/00207160902721797.

@Article{Cabrera2009a,
     author = {Inma P. Cabrera and Pablo Cordero and Gloria Guti{’e}rrez and Javier Mart'and Manuel Ojeda-Aciego},
     journal = {Int. J. Comput. Math.},
     title = {Fuzzy congruence relations on nd-groupoids},
     year = {2009},
     number = {10{&}11},
     pages = {1684–1695},
     volume = {86},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/ijcm/CabreraCGMO09.bib},
     doi = {10.1080/00207160902721797},
     timestamp = {Tue, 29 Aug 2023 01:00:00 +0200},
     url = {https://doi.org/10.1080/00207160902721797},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 5
  • Scopus - Citation Indexes: 6
  • Captures
  • Mendeley - Readers: 6

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

2017201420120.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.

[2] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.

[3] P. Cordero, M. Enciso, A. Mora, et al. “A Complete Logic for Fuzzy Functional Dependencies over Domains with Similarity Relations”. In: Bio-Inspired Systems: Computational and Ambient Intelligence. Springer Berlin Heidelberg, 2009, p. 261–269. ISBN: 9783642024788. DOI: 10.1007/978-3-642-02478-8_33. URL: http://dx.doi.org/10.1007/978-3-642-02478-8_33.

[4] E. Hendukolaii. “On Fuzzy Homomorphisms Between Hypernear-rings”. In: Journal of Mathematics and Computer Science 02.04 (May. 2011), p. 702–716. ISSN: 2008-949X. DOI: 10.22436/jmcs.02.04.16. URL: http://dx.doi.org/10.22436/jmcs.02.04.16.

[5] B. B. N. Koguep and C. Lele. “Weak-hyperlattices derived from fuzzy congruences”. In: Discussiones Mathematicae - General Algebra and Applications 37.1 (2017), p. 75. ISSN: 2084-0373. DOI: 10.7151/dmgaa.1260. URL: http://dx.doi.org/10.7151/dmgaa.1260.

[6] A. Mora, P. Cordero, M. Enciso, et al. “Closure via functional dependence simplification”. In: International Journal of Computer Mathematics 89.4 (Mar. 2012), p. 510–526. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.644275. URL: http://dx.doi.org/10.1080/00207160.2011.644275.

[7] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.