Congruence relations on some hyperstructures

uncategorised
Authors

Inma P. Cabrera

Pablo Cordero

Gloria Gutiérrez

Javier Martínez

Manuel Ojeda-Aciego

Published

1 January 2009

Publication details

Ann. Math. Artif. Intell. vol. 56 (3-4), pages 361–370.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Cab+09] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Congruence relations on some hyperstructures”. In: Ann. Math. Artif. Intell. 56.3-4 (2009), pp. 361-370. DOI: 10.1007/S10472-009-9146-5. URL: https://doi.org/10.1007/s10472-009-9146-5.

@Article{Cabrera2009,
     author = {Inma P. Cabrera and Pablo Cordero and Gloria Guti{’e}rrez and Javier Mart'and Manuel Ojeda-Aciego},
     journal = {Ann. Math. Artif. Intell.},
     title = {Congruence relations on some hyperstructures},
     year = {2009},
     number = {3-4},
     pages = {361–370},
     volume = {56},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/amai/CabreraCGMO09.bib},
     doi = {10.1007/S10472-009-9146-5},
     timestamp = {Tue, 29 Aug 2023 01:00:00 +0200},
     url = {https://doi.org/10.1007/s10472-009-9146-5},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 7
  • Scopus - Citation Indexes: 11
  • Captures
  • Mendeley - Readers: 4

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202220212018201720152014201320120.00.51.01.52.0
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.

[2] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.

[3] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 1–21. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.002. URL: http://dx.doi.org/10.1016/j.fss.2013.04.002.

[4] K. K. Gireesan. “Nd-M-fuzzy join semi-lattice and Nd-M-fuzzy meet semi-lattice”. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCES-MODELLING, COMPUTING AND SOFT COMPUTING (CSMCS 2020). Vol. 2336. AIP Publishing, 2021, p. 040007. DOI: 10.1063/5.0046105. URL: http://dx.doi.org/10.1063/5.0046105.

[5] E. Hendukolaii. “On Fuzzy Homomorphisms Between Hypernear-rings”. In: Journal of Mathematics and Computer Science 02.04 (May. 2011), p. 702–716. ISSN: 2008-949X. DOI: 10.22436/jmcs.02.04.16. URL: http://dx.doi.org/10.22436/jmcs.02.04.16.

[6] A. Kalampakas and O. Louscou-Bozapalidou. “Syntactic Nondeterministic Monoids”. In: Journal of Discrete Mathematical Sciences and Cryptography 18.6 (Nov. 2015), p. 717–726. ISSN: 2169-0065. DOI: 10.1080/09720529.2014.943462. URL: http://dx.doi.org/10.1080/09720529.2014.943462.

[7] P. C. Kengne, B. B. Koguep Njionou, D. C. Awouafack, et al. “ -Fuzzy Cosets of -Fuzzy Filters of Residuated Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Sep. 2022). Ed. by F. Mynard, p. 1–14. ISSN: 0161-1712. DOI: 10.1155/2022/6833943. URL: http://dx.doi.org/10.1155/2022/6833943.

[8] B. B. N. Koguep and C. Lele. “On hyperlattices: congruence relations, ideals and homomorphism”. In: Afrika Matematika 30.1–2 (Sep. 2018), p. 101–111. ISSN: 2190-7668. DOI: 10.1007/s13370-018-0630-0. URL: http://dx.doi.org/10.1007/s13370-018-0630-0.

[9] B. B. N. Koguep and C. Lele. “Weak-hyperlattices derived from fuzzy congruences”. In: Discussiones Mathematicae - General Algebra and Applications 37.1 (2017), p. 75. ISSN: 2084-0373. DOI: 10.7151/dmgaa.1260. URL: http://dx.doi.org/10.7151/dmgaa.1260.

[10] B. B. N. Koguep, C. Lele, and J. B. Nganou. “Normal hyperlattices and pure ideals of hyperlattices”. In: Asian-European Journal of Mathematics 09.01 (Feb. 2016), p. 1650020. ISSN: 1793-7183. DOI: 10.1142/s1793557116500200. URL: http://dx.doi.org/10.1142/s1793557116500200.

[11] D. Preethi and J. Vimala. “Redox reaction on homomorphism of fuzzy hyperlattice ordered group”. In: Journal of Intelligent & Fuzzy Systems 41.5 (Nov. 2021). Ed. by S. M. Thampi, E. M. El-Alfy and L. Trajkovic, p. 5691–5699. ISSN: 1875-8967. DOI: 10.3233/jifs-189888. URL: http://dx.doi.org/10.3233/jifs-189888.

[12] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.