Congruence relations on some hyperstructures
Abstract
Citation
Please, cite this work as:
[Cab+09] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Congruence relations on some hyperstructures”. In: Ann. Math. Artif. Intell. 56.3-4 (2009), pp. 361-370. DOI: 10.1007/S10472-009-9146-5. URL: https://doi.org/10.1007/s10472-009-9146-5.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.
[2] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.
[3] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 1–21. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.002. URL: http://dx.doi.org/10.1016/j.fss.2013.04.002.
[4] K. K. Gireesan. “Nd-M-fuzzy join semi-lattice and Nd-M-fuzzy meet semi-lattice”. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCES-MODELLING, COMPUTING AND SOFT COMPUTING (CSMCS 2020). Vol. 2336. AIP Publishing, 2021, p. 040007. DOI: 10.1063/5.0046105. URL: http://dx.doi.org/10.1063/5.0046105.
[5] E. Hendukolaii. “On Fuzzy Homomorphisms Between Hypernear-rings”. In: Journal of Mathematics and Computer Science 02.04 (May. 2011), p. 702–716. ISSN: 2008-949X. DOI: 10.22436/jmcs.02.04.16. URL: http://dx.doi.org/10.22436/jmcs.02.04.16.
[6] A. Kalampakas and O. Louscou-Bozapalidou. “Syntactic Nondeterministic Monoids”. In: Journal of Discrete Mathematical Sciences and Cryptography 18.6 (Nov. 2015), p. 717–726. ISSN: 2169-0065. DOI: 10.1080/09720529.2014.943462. URL: http://dx.doi.org/10.1080/09720529.2014.943462.
[7] P. C. Kengne, B. B. Koguep Njionou, D. C. Awouafack, et al. “-Fuzzy Cosets of -Fuzzy Filters of Residuated Multilattices”. In: International Journal of Mathematics and Mathematical Sciences 2022 (Sep. 2022). Ed. by F. Mynard, p. 1–14. ISSN: 0161-1712. DOI: 10.1155/2022/6833943. URL: http://dx.doi.org/10.1155/2022/6833943.
[8] B. B. N. Koguep and C. Lele. “On hyperlattices: congruence relations, ideals and homomorphism”. In: Afrika Matematika 30.1–2 (Sep. 2018), p. 101–111. ISSN: 2190-7668. DOI: 10.1007/s13370-018-0630-0. URL: http://dx.doi.org/10.1007/s13370-018-0630-0.
[9] B. B. N. Koguep and C. Lele. “Weak-hyperlattices derived from fuzzy congruences”. In: Discussiones Mathematicae - General Algebra and Applications 37.1 (2017), p. 75. ISSN: 2084-0373. DOI: 10.7151/dmgaa.1260. URL: http://dx.doi.org/10.7151/dmgaa.1260.
[10] B. B. N. Koguep, C. Lele, and J. B. Nganou. “Normal hyperlattices and pure ideals of hyperlattices”. In: Asian-European Journal of Mathematics 09.01 (Feb. 2016), p. 1650020. ISSN: 1793-7183. DOI: 10.1142/s1793557116500200. URL: http://dx.doi.org/10.1142/s1793557116500200.
[11] D. Preethi and J. Vimala. “Redox reaction on homomorphism of fuzzy hyperlattice ordered group”. In: Journal of Intelligent & Fuzzy Systems 41.5 (Nov. 2021). Ed. by S. M. Thampi, E. M. El-Alfy and L. Trajkovic, p. 5691–5699. ISSN: 1875-8967. DOI: 10.3233/jifs-189888. URL: http://dx.doi.org/10.3233/jifs-189888.
[12] B. Šešelja, V. Stepanović, and A. Tepavčević. “Representation of lattices by fuzzy weak congruence relations”. In: Fuzzy Sets and Systems 260 (Feb. 2015), p. 97–109. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.05.009. URL: http://dx.doi.org/10.1016/j.fss.2014.05.009.