A neural implementation of multi-adjoint logic programming
Abstract
Citation
Please, cite this work as:
[MCO04] J. Medina, E. M. Casermeiro, and M. Ojeda-Aciego. “A neural implementation of multi-adjoint logic programming”. In: J. Appl. Log. 2.3 (2004), pp. 301-324. DOI: 10.1016/J.JAL.2004.03.006. URL: https://doi.org/10.1016/j.jal.2004.03.006.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] H. Abubakar and S. Yusuf. “Logic-Based Reverse Analysis: A Covid-19 Surveillance Data Set Classification Problem”. In: Journal of Basic and Applied Research in Biomedicine 9.1 (Nov. 2023), p. 17–25. ISSN: 2413-7014. DOI: 10.51152/jbarbiomed.v9i1.227. URL: http://dx.doi.org/10.51152/jbarbiomed.v9i1.227.
[2] A. Chortaras, G. Stamou, and A. Stafylopatis. “Adaptation of Weighted Fuzzy Programs”. In: Artificial Neural Networks – ICANN 2006. Springer Berlin Heidelberg, 2006, p. 45–54. ISBN: 9783540388739. DOI: 10.1007/11840930_5. URL: http://dx.doi.org/10.1007/11840930_5.
[3] A. Chortaras, G. Stamou, and A. Stafylopatis. “Connectionist weighted fuzzy logic programs”. In: Neurocomputing 71.13–15 (Aug. 2008), p. 2456–2469. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2007.11.034. URL: http://dx.doi.org/10.1016/j.neucom.2007.11.034.
[4] A. CHORTARAS, G. STAMOU, and A. STAFYLOPATIS. “DEFINITION AND ADAPTATION OF WEIGHTED FUZZY LOGIC PROGRAMS”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17.01 (Feb. 2009), p. 85–135. ISSN: 1793-6411. DOI: 10.1142/s0218488509005759. URL: http://dx.doi.org/10.1142/s0218488509005759.
[5] A. Chortaras, G. Stamou, A. Stafylopatis, et al. “A Connectionist Model for Weighted Fuzzy Programs”. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006, p. 3055–3062. DOI: 10.1109/ijcnn.2006.247265. URL: http://dx.doi.org/10.1109/ijcnn.2006.247265.
[6] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.
[7] C. Damasio, J. Medina, and M. Ojeda-Aciego. “A Tabulation Proof Procedure for First-order Residuated Logic Programs: Soundness, Completeness and Optimizations”. In: 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006, p. 2004–2011. DOI: 10.1109/fuzzy.2006.1681978. URL: http://dx.doi.org/10.1109/fuzzy.2006.1681978.
[8] A. A. de Lima, B. Bedregal, and I. Mezzomo. “Ordinal sums of the main classes of fuzzy negations and the natural negations of t-norms, t-conorms and fuzzy implications”. In: International Journal of Approximate Reasoning 116 (Jan. 2020), p. 19–32. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.10.004. URL: http://dx.doi.org/10.1016/j.ijar.2019.10.004.
[9] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.
[10] J. Medina. “Adjoint Pairs on Interval-Valued Fuzzy Sets”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. Springer Berlin Heidelberg, 2010, p. 430–439. ISBN: 9783642140587. DOI: 10.1007/978-3-642-14058-7_45. URL: http://dx.doi.org/10.1007/978-3-642-14058-7_45.
[11] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “Decomposing Ordinal Sums in Neural Multi-adjoint Logic Programs”. In: Advances in Artificial Intelligence – IBERAMIA 2004. Springer Berlin Heidelberg, 2004, p. 717–726. ISBN: 9783540304982. DOI: 10.1007/978-3-540-30498-2_72. URL: http://dx.doi.org/10.1007/978-3-540-30498-2_72.
[12] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “Interval-Valued Neural Multi-adjoint Logic Programs”. In: Mechanisms, Symbols, and Models Underlying Cognition. Springer Berlin Heidelberg, 2005, p. 518–527. ISBN: 9783540316725. DOI: 10.1007/11499220_53. URL: http://dx.doi.org/10.1007/11499220_53.
[13] Y. Xu, J. Liu, X. Zhong, et al. “Multiary α-Resolution Principle for a Lattice-Valued Logic”. In: IEEE Transactions on Fuzzy Systems 21.5 (Oct. 2013), p. 898–912. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2012.2236095. URL: http://dx.doi.org/10.1109/tfuzz.2012.2236095.
