A neural implementation of multi-adjoint logic programming

Authors

Jesús Medina

Enrique Mérida Casermeiro

Manuel Ojeda-Aciego

Published

1 January 2004

Publication details

J. Appl. Log. vol. 2 (3), pages 301–324.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[MCO04] J. Medina, E. M. Casermeiro, and M. Ojeda-Aciego. “A neural implementation of multi-adjoint logic programming”. In: J. Appl. Log. 2.3 (2004), pp. 301-324. DOI: 10.1016/J.JAL.2004.03.006. URL: https://doi.org/10.1016/j.jal.2004.03.006.

@Article{Medina2004a,
     author = {Jes{’u}s Medina and Enrique M{’e}rida Casermeiro and Manuel Ojeda-Aciego},
     journal = {J. Appl. Log.},
     title = {A neural implementation of multi-adjoint logic programming},
     year = {2004},
     number = {3},
     pages = {301–324},
     volume = {2},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/japll/MedinaCO04.bib},
     doi = {10.1016/J.JAL.2004.03.006},
     timestamp = {Tue, 16 Feb 2021 00:00:00 +0100},
     url = {https://doi.org/10.1016/j.jal.2004.03.006},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 7
  • Scopus - Citation Indexes: 13
  • Captures
  • Mendeley - Readers: 7

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20232019201720120.00.51.01.52.0
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] H. Abubakar and S. Yusuf. “Logic-Based Reverse Analysis: A Covid-19 Surveillance Data Set Classification Problem”. In: Journal of Basic and Applied Research in Biomedicine 9.1 (Nov. 2023), p. 17–25. ISSN: 2413-7014. DOI: 10.51152/jbarbiomed.v9i1.227. URL: http://dx.doi.org/10.51152/jbarbiomed.v9i1.227.

[2] A. Chortaras, G. Stamou, and A. Stafylopatis. “Adaptation of Weighted Fuzzy Programs”. In: Artificial Neural Networks – ICANN 2006. Springer Berlin Heidelberg, 2006, p. 45–54. ISBN: 9783540388739. DOI: 10.1007/11840930_5. URL: http://dx.doi.org/10.1007/11840930_5.

[3] A. Chortaras, G. Stamou, and A. Stafylopatis. “Connectionist weighted fuzzy logic programs”. In: Neurocomputing 71.13–15 (Aug. 2008), p. 2456–2469. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2007.11.034. URL: http://dx.doi.org/10.1016/j.neucom.2007.11.034.

[4] A. CHORTARAS, G. STAMOU, and A. STAFYLOPATIS. “DEFINITION AND ADAPTATION OF WEIGHTED FUZZY LOGIC PROGRAMS”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17.01 (Feb. 2009), p. 85–135. ISSN: 1793-6411. DOI: 10.1142/s0218488509005759. URL: http://dx.doi.org/10.1142/s0218488509005759.

[5] A. Chortaras, G. Stamou, A. Stafylopatis, et al. “A Connectionist Model for Weighted Fuzzy Programs”. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006, p. 3055–3062. DOI: 10.1109/ijcnn.2006.247265. URL: http://dx.doi.org/10.1109/ijcnn.2006.247265.

[6] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.

[7] C. Damasio, J. Medina, and M. Ojeda-Aciego. “A Tabulation Proof Procedure for First-order Residuated Logic Programs: Soundness, Completeness and Optimizations”. In: 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006, p. 2004–2011. DOI: 10.1109/fuzzy.2006.1681978. URL: http://dx.doi.org/10.1109/fuzzy.2006.1681978.

[8] A. A. de Lima, B. Bedregal, and I. Mezzomo. “Ordinal sums of the main classes of fuzzy negations and the natural negations of t-norms, t-conorms and fuzzy implications”. In: International Journal of Approximate Reasoning 116 (Jan. 2020), p. 19–32. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.10.004. URL: http://dx.doi.org/10.1016/j.ijar.2019.10.004.

[9] N. Madrid and M. Ojeda-Aciego. “The f-index of inclusion as optimal adjoint pair for fuzzy modus ponens”. In: Fuzzy Sets and Systems 466 (Aug. 2023), p. 108474. ISSN: 0165-0114. DOI: 10.1016/j.fss.2023.01.009. URL: http://dx.doi.org/10.1016/j.fss.2023.01.009.

[10] J. Medina. “Adjoint Pairs on Interval-Valued Fuzzy Sets”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. Springer Berlin Heidelberg, 2010, p. 430–439. ISBN: 9783642140587. DOI: 10.1007/978-3-642-14058-7_45. URL: http://dx.doi.org/10.1007/978-3-642-14058-7_45.

[11] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “Decomposing Ordinal Sums in Neural Multi-adjoint Logic Programs”. In: Advances in Artificial Intelligence – IBERAMIA 2004. Springer Berlin Heidelberg, 2004, p. 717–726. ISBN: 9783540304982. DOI: 10.1007/978-3-540-30498-2_72. URL: http://dx.doi.org/10.1007/978-3-540-30498-2_72.

[12] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “Interval-Valued Neural Multi-adjoint Logic Programs”. In: Mechanisms, Symbols, and Models Underlying Cognition. Springer Berlin Heidelberg, 2005, p. 518–527. ISBN: 9783540316725. DOI: 10.1007/11499220_53. URL: http://dx.doi.org/10.1007/11499220_53.

[13] Y. Xu, J. Liu, X. Zhong, et al. “Multiary α-Resolution Principle for a Lattice-Valued Logic”. In: IEEE Transactions on Fuzzy Systems 21.5 (Oct. 2013), p. 898–912. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2012.2236095. URL: http://dx.doi.org/10.1109/tfuzz.2012.2236095.