A New Algebraic Tool for Automatic Theorem Provers
Abstract
Citation
Please, cite this work as:
[Cor+04] P. Cordero, G. Gutiérrez, J. Mart', et al. “A New Algebraic Tool for Automatic Theorem Provers”. In: Ann. Math. Artif. Intell. 42.4 (2004), pp. 369-398. DOI: 10.1023/B:AMAI.0000038312.77514.3C. URL: https://doi.org/10.1023/B:AMAI.0000038312.77514.3c.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Congruence relations on some hyperstructures”. In: Annals of Mathematics and Artificial Intelligence 56.3–4 (Jul. 2009), p. 361–370. ISSN: 1573-7470. DOI: 10.1007/s10472-009-9146-5. URL: http://dx.doi.org/10.1007/s10472-009-9146-5.
[2] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.
[3] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.
[4] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “Finitary coalgebraic multisemilattices and multilattices”. In: Applied Mathematics and Computation 219.1 (Sep. 2012), p. 31–44. ISSN: 0096-3003. DOI: 10.1016/j.amc.2011.10.081. URL: http://dx.doi.org/10.1016/j.amc.2011.10.081.
[5] P. Cordero, A. Mora, I. de Guzmán, et al. “Non-deterministic ideal operators: An adequate tool for formalization in Data Bases”. In: Discrete Applied Mathematics 156.6 (Mar. 2008), p. 911–923. ISSN: 0166-218X. DOI: 10.1016/j.dam.2007.02.014. URL: http://dx.doi.org/10.1016/j.dam.2007.02.014.
[6] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint Triples and Residuated Aggregators”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2014, p. 345–354. ISBN: 9783319088525. DOI: 10.1007/978-3-319-08852-5_36. URL: http://dx.doi.org/10.1007/978-3-319-08852-5_36.
[7] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Multi-adjoint algebras versus non-commutative residuated structures”. In: International Journal of Approximate Reasoning 66 (Nov. 2015), p. 119–138. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2015.08.003. URL: http://dx.doi.org/10.1016/j.ijar.2015.08.003.
[8] J. C. Díaz and J. Medina. “Multi-adjoint relation equations: Definition, properties and solutions using concept lattices”. In: Information Sciences 253 (Dec. 2013), p. 100–109. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.07.024. URL: http://dx.doi.org/10.1016/j.ins.2013.07.024.
[9] K. Inoue, N. V. Do, V. T. Pham, et al. “Solving problems on a knowledge model of operators and application”. In: International Journal of Digital Enterprise Technology 1.1/2 (2018), p. 37. ISSN: 1756-2562. DOI: 10.1504/ijdet.2018.10013744. URL: http://dx.doi.org/10.1504/ijdet.2018.10013744.
[10] J. Martínez, G. Gutiérrez, I. de Guzmán, et al. “Generalizations of lattices via non-deterministic operators”. In: Discrete Mathematics 295.1–3 (May. 2005), p. 107–141. ISSN: 0012-365X. DOI: 10.1016/j.disc.2004.08.043. URL: http://dx.doi.org/10.1016/j.disc.2004.08.043.
[11] J. Medina-Moreno, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Concept-Forming Operators on Multilattices”. In: Formal Concept Analysis. Springer Berlin Heidelberg, 2013, p. 203–215. ISBN: 9783642383175. DOI: 10.1007/978-3-642-38317-5_13. URL: http://dx.doi.org/10.1007/978-3-642-38317-5_13.
[12] J. Medina, M. Ojeda-Aciego, J. Pócs, et al. “On the Dedekind–MacNeille completion and formal concept analysis based on multilattices”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 1–20. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.01.007. URL: http://dx.doi.org/10.1016/j.fss.2016.01.007.
[13] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Fuzzy logic programming via multilattices”. In: Fuzzy Sets and Systems 158.6 (Mar. 2007), p. 674–688. ISSN: 0165-0114. DOI: 10.1016/j.fss.2006.11.006. URL: http://dx.doi.org/10.1016/j.fss.2006.11.006.
[14] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Multi-lattices as a Basis for Generalized Fuzzy Logic Programming”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2006, p. 61–70. ISBN: 9783540325307. DOI: 10.1007/11676935_8. URL: http://dx.doi.org/10.1007/11676935_8.
[15] H. D. Nguyen and N. V. Do. “Method for solving problems on a knowledge model of operators”. In: 2016 IEEE Conference on e-Learning, e-Management and e-Services (IC3e). IEEE, Oct. 2016, p. 122–127. DOI: 10.1109/ic3e.2016.8009052. URL: http://dx.doi.org/10.1109/ic3e.2016.8009052.
[16] H. D. Nguyen, N. V. Do, V. T. Pham, et al. “Solving problems on a knowledge model of operators and application”. In: International Journal of Digital Enterprise Technology 1.1/2 (2018), p. 37. ISSN: 1756-2562. DOI: 10.1504/ijdet.2018.092632. URL: http://dx.doi.org/10.1504/ijdet.2018.092632.
[17] N. V., H. D., and T. T. “Reasoning Method on Knowledge about Functions and Operators”. In: International Journal of Advanced Computer Science and Applications 6.6 (2015). ISSN: 2158-107X. DOI: 10.14569/ijacsa.2015.060622. URL: http://dx.doi.org/10.14569/ijacsa.2015.060622.
