Reducing signed propositional formulas
Abstract
Citation
Please, cite this work as:
[Agu+98] G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, et al. “Reducing signed propositional formulas”. In: Soft Comput. 2.4 (1998), pp. 157-166. DOI: 10.1007/S005000050048. URL: https://doi.org/10.1007/s005000050048.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] G. Aguilera, I. de Guzmán, M. Ojeda-Aciego, et al. “Reductions for non-clausal theorem proving”. In: Theoretical Computer Science 266.1–2 (Sep. 2001), p. 81–112. ISSN: 0304-3975. DOI: 10.1016/s0304-3975(00)00044-x. URL: http://dx.doi.org/10.1016/s0304-3975(00)00044-x.
[2] P. Cordero, M. Enciso, and I. de Guzmán. “Bases for closed sets of implicants and implicates in temporal logic”. In: Acta Informatica 38.9 (Aug. 2002), p. 599–619. ISSN: 1432-0525. DOI: 10.1007/s00236-002-0087-2. URL: http://dx.doi.org/10.1007/s00236-002-0087-2.
[3] P. Cordero, M. Enciso, and I. P. de Guzmán. “A temporal negative normal form which preserves implicants and implicates”. In: Journal of Applied Non-Classical Logics 10.3–4 (Jan. 2000), p. 243–272. ISSN: 1958-5780. DOI: 10.1080/11663081.2000.10510999. URL: http://dx.doi.org/10.1080/11663081.2000.10510999.
[4] I. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees in Multiple-Valued Logics”. In: Artificial Intelligence: Methodology, Systems, and Applications. Springer Berlin Heidelberg, 2002, p. 223–232. ISBN: 9783540461487. DOI: 10.1007/3-540-46148-5_23. URL: http://dx.doi.org/10.1007/3-540-46148-5_23.
[5] I. P. de Guzmán, P. Cordero, and M. Enciso. “Structure Theorems for Closed Sets of Implicates/Implicants in Temporal Logic”. In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 1999, p. 193–207. ISBN: 9783540481591. DOI: 10.1007/3-540-48159-1_14. URL: http://dx.doi.org/10.1007/3-540-48159-1_14.
[6] I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees and Reduction Theorems in Multiple-Valued Logics”. In: Advances in Artificial Intelligence — IBERAMIA 2002. Springer Berlin Heidelberg, 2002, p. 161–171. ISBN: 9783540361312. DOI: 10.1007/3-540-36131-6_17. URL: http://dx.doi.org/10.1007/3-540-36131-6_17.
[7] R. Hähnle. “Advanced Many-Valued Logics”. In: Handbook of Philosophical Logic. Springer Netherlands, 2001, p. 297–395. ISBN: 9789401704526. DOI: 10.1007/978-94-017-0452-6_5. URL: http://dx.doi.org/10.1007/978-94-017-0452-6_5.
[8] G. E. Imaz. “A first polynomial non-clausal class in many-valued logic”. In: Fuzzy Sets and Systems 456 (Mar. 2023), p. 1–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.10.008. URL: http://dx.doi.org/10.1016/j.fss.2022.10.008.
[9] D. Pearce, I. P. de Guzmán, and A. Valverde. “A Tableau Calculus for Equilibrium Entailment”. In: Automated Reasoning with Analytic Tableaux and Related Methods. Springer Berlin Heidelberg, 2000, p. 352–367. ISBN: 9783540450085. DOI: 10.1007/10722086_28. URL: http://dx.doi.org/10.1007/10722086_28.
[10] D. Pearce, I. P. de Guzmán, and A. Valverde. “Computing Equilibrium Models Using Signed Formulas”. In: Computational Logic — CL 2000. Springer Berlin Heidelberg, 2000, p. 688–702. ISBN: 9783540449577. DOI: 10.1007/3-540-44957-4_46. URL: http://dx.doi.org/10.1007/3-540-44957-4_46.
[11] D. Pearce and A. Valverde. “Uniform Equivalence for Equilibrium Logic and Logic Programs”. In: Logic Programming and Nonmonotonic Reasoning. Springer Berlin Heidelberg, 2003, p. 194–206. ISBN: 9783540246091. DOI: 10.1007/978-3-540-24609-1_18. URL: http://dx.doi.org/10.1007/978-3-540-24609-1_18.
