Reducing signed propositional formulas

Authors

Gabriel Aguilera

Inma P. de Guzmán

Manuel Ojeda-Aciego

Agustín Valverde

Published

1 January 1998

Publication details

Soft Comput. vol. 2 (4), pages 157–166.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Agu+98] G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, et al. “Reducing signed propositional formulas”. In: Soft Comput. 2.4 (1998), pp. 157-166. DOI: 10.1007/S005000050048. URL: https://doi.org/10.1007/s005000050048.

@Article{Aguilera1998,
     author = {Gabriel Aguilera and Inman P. {de Guzm{’a}n} and Manuel Ojeda-Aciego and Agust'Valverde},
     journal = {Soft Comput.},
     title = {Reducing signed propositional formulas},
     year = {1998},
     number = {4},
     pages = {157–166},
     volume = {2},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/journals/soco/AguileraGOV98.bib},
     doi = {10.1007/S005000050048},
     timestamp = {Fri, 26 May 2023 01:00:00 +0200},
     url = {https://doi.org/10.1007/s005000050048},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 6
  • Captures
  • Mendeley - Readers: 1

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20220.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] G. Aguilera, I. de Guzmán, M. Ojeda-Aciego, et al. “Reductions for non-clausal theorem proving”. In: Theoretical Computer Science 266.1–2 (Sep. 2001), p. 81–112. ISSN: 0304-3975. DOI: 10.1016/s0304-3975(00)00044-x. URL: http://dx.doi.org/10.1016/s0304-3975(00)00044-x.

[2] P. Cordero, M. Enciso, and I. de Guzmán. “Bases for closed sets of implicants and implicates in temporal logic”. In: Acta Informatica 38.9 (Aug. 2002), p. 599–619. ISSN: 1432-0525. DOI: 10.1007/s00236-002-0087-2. URL: http://dx.doi.org/10.1007/s00236-002-0087-2.

[3] P. Cordero, M. Enciso, and I. P. de Guzmán. “A temporal negative normal form which preserves implicants and implicates”. In: Journal of Applied Non-Classical Logics 10.3–4 (Jan. 2000), p. 243–272. ISSN: 1958-5780. DOI: 10.1080/11663081.2000.10510999. URL: http://dx.doi.org/10.1080/11663081.2000.10510999.

[4] I. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees in Multiple-Valued Logics”. In: Artificial Intelligence: Methodology, Systems, and Applications. Springer Berlin Heidelberg, 2002, p. 223–232. ISBN: 9783540461487. DOI: 10.1007/3-540-46148-5_23. URL: http://dx.doi.org/10.1007/3-540-46148-5_23.

[5] I. P. de Guzmán, P. Cordero, and M. Enciso. “Structure Theorems for Closed Sets of Implicates/Implicants in Temporal Logic”. In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 1999, p. 193–207. ISBN: 9783540481591. DOI: 10.1007/3-540-48159-1_14. URL: http://dx.doi.org/10.1007/3-540-48159-1_14.

[6] I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees and Reduction Theorems in Multiple-Valued Logics”. In: Advances in Artificial Intelligence — IBERAMIA 2002. Springer Berlin Heidelberg, 2002, p. 161–171. ISBN: 9783540361312. DOI: 10.1007/3-540-36131-6_17. URL: http://dx.doi.org/10.1007/3-540-36131-6_17.

[7] R. Hähnle. “Advanced Many-Valued Logics”. In: Handbook of Philosophical Logic. Springer Netherlands, 2001, p. 297–395. ISBN: 9789401704526. DOI: 10.1007/978-94-017-0452-6_5. URL: http://dx.doi.org/10.1007/978-94-017-0452-6_5.

[8] G. E. Imaz. “A first polynomial non-clausal class in many-valued logic”. In: Fuzzy Sets and Systems 456 (Mar. 2023), p. 1–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.10.008. URL: http://dx.doi.org/10.1016/j.fss.2022.10.008.

[9] D. Pearce, I. P. de Guzmán, and A. Valverde. “A Tableau Calculus for Equilibrium Entailment”. In: Automated Reasoning with Analytic Tableaux and Related Methods. Springer Berlin Heidelberg, 2000, p. 352–367. ISBN: 9783540450085. DOI: 10.1007/10722086_28. URL: http://dx.doi.org/10.1007/10722086_28.

[10] D. Pearce, I. P. de Guzmán, and A. Valverde. “Computing Equilibrium Models Using Signed Formulas”. In: Computational Logic — CL 2000. Springer Berlin Heidelberg, 2000, p. 688–702. ISBN: 9783540449577. DOI: 10.1007/3-540-44957-4_46. URL: http://dx.doi.org/10.1007/3-540-44957-4_46.

[11] D. Pearce and A. Valverde. “Uniform Equivalence for Equilibrium Logic and Logic Programs”. In: Logic Programming and Nonmonotonic Reasoning. Springer Berlin Heidelberg, 2003, p. 194–206. ISBN: 9783540246091. DOI: 10.1007/978-3-540-24609-1_18. URL: http://dx.doi.org/10.1007/978-3-540-24609-1_18.