New links between mathematical morphology and fuzzy property-oriented concept lattices

Authors

Juan Carlos Díaz

Nicolás Madrid

Jesús Medina

Manuel Ojeda-Aciego

Published

1 January 2014

Publication details

{IEEE} International Conference on Fuzzy Systems, {FUZZ-IEEE} 2014, Beijing, China, July 6-11, 2014 , pages 599–603.

Links

DOI

 

Abstract

The theory of fuzzy property-oriented concept lattices is a formal tool for modeling and processing incomplete knowledge in information systems. This paper relates this research topic to that of mathematical morphology, a theory whose scope is to process and analyze images and signals. Consequently, the theory developed in the concept lattice framework can be used in these particular settings.

Citation

Please, cite this work as:

[+14] J. C. D', N. Madrid, J. Medina, et al. “New links between mathematical morphology and fuzzy property-oriented concept lattices”. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2014, Beijing, China, July 6-11, 2014. IEEE, 2014, pp. 599-603. DOI: 10.1109/FUZZ-IEEE.2014.6891882. URL: https://doi.org/10.1109/FUZZ-IEEE.2014.6891882.

@InProceedings{Diaz2014,
     author = {Juan Carlos D'and Nicol{’a}s Madrid and Jes{’u}s Medina and Manuel Ojeda-Aciego},
     booktitle = {{IEEE} International Conference on Fuzzy Systems, {FUZZ-IEEE} 2014, Beijing, China, July 6-11, 2014},
     title = {New links between mathematical morphology and fuzzy property-oriented concept lattices},
     year = {2014},
     pages = {599–603},
     publisher = {{IEEE}},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/fuzzIEEE/DiazMMO14.bib},
     doi = {10.1109/FUZZ-IEEE.2014.6891882},
     timestamp = {Mon, 03 Jan 2022 00:00:00 +0100},
     url = {https://doi.org/10.1109/FUZZ-IEEE.2014.6891882},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 7
  • Captures
  • Mendeley - Readers: 5

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20182016201520140.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] P. Eklund, M. Á. Galán García, J. Kortelainen, et al. “Monadic Formal Concept Analysis”. In: Rough Sets and Current Trends in Soft Computing. Springer International Publishing, 2014, p. 201–210. ISBN: 9783319086446. DOI: 10.1007/978-3-319-08644-6_21. URL: http://dx.doi.org/10.1007/978-3-319-08644-6_21.

[2] N. Madrid, M. Ojeda-Aciego, J. Medina, et al. “L-fuzzy relational mathematical morphology based on adjoint triples”. In: Information Sciences 474 (Feb. 2019), p. 75–89. ISSN: 0020-0255. DOI: 10.1016/j.ins.2018.09.028. URL: http://dx.doi.org/10.1016/j.ins.2018.09.028.

[3] Y. Zhang, T. Y. Ji, M. S. Li, et al. “Power disturbance identification based on transient behaviors using morphological max-lifting scheme and nonlinear principal component analysis”. In: 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). IEEE, Nov. 2015, p. 1–5. DOI: 10.1109/isgt-asia.2015.7387034. URL: http://dx.doi.org/10.1109/isgt-asia.2015.7387034.