On Galois Connections and Soft Computing
Abstract
Citation
Please, cite this work as:
[Gar+13] F. Garc'-Pardo, I. P. Cabrera, P. Cordero, et al. “On Galois Connections and Soft Computing”. In: Advances in Computational Intelligence - 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II. Ed. by I. Rojas, G. J. Caparrós and J. Cabestany. Vol. 7903. Lecture Notes in Computer Science. Springer, 2013, pp. 224-235. DOI: 10.1007/978-3-642-38682-4_26. URL: https://doi.org/10.1007/978-3-642-38682-4_26.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.
[2] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “A Relational Extension of Galois Connections”. In: Formal Concept Analysis. Springer International Publishing, 2019, p. 290–303. ISBN: 9783030214623. DOI: 10.1007/978-3-030-21462-3_19. URL: http://dx.doi.org/10.1007/978-3-030-21462-3_19.
[3] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Galois connections between transitive digraphs: Characterization and construction”. In: Information Sciences 519 (May. 2020), p. 439–450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.01.034. URL: http://dx.doi.org/10.1016/j.ins.2020.01.034.
[4] I. P. Cabrera, P. Cordero, E. Muñoz‐Velasco, et al. “Relational Galois connections between transitive fuzzy digraphs”. In: Mathematical Methods in the Applied Sciences 43.9 (Feb. 2020), p. 5673–5680. ISSN: 1099-1476. DOI: 10.1002/mma.6302. URL: http://dx.doi.org/10.1002/mma.6302.
[5] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “On fuzzy relations, adjunctions, and functional fuzzy relations”. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2016, p. 1–7. DOI: 10.1109/ssci.2016.7850149. URL: http://dx.doi.org/10.1109/ssci.2016.7850149.
[6] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Relational fuzzy Galois connections”. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Jun. 2017, p. 1–6. DOI: 10.1109/ifsa-scis.2017.8023288. URL: http://dx.doi.org/10.1109/ifsa-scis.2017.8023288.
[7] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Towards relational fuzzy adjunctions”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–5. DOI: 10.1109/fuzz-ieee.2017.8015677. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015677.
[8] I. Cabrera, P. Cordero, F. García-Pardo, et al. “On the construction of adjunctions between a fuzzy preposet and an unstructured set”. In: Fuzzy Sets and Systems 320 (Aug. 2017), p. 81–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.09.013. URL: http://dx.doi.org/10.1016/j.fss.2016.09.013.
[9] I. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Galois connections in computational intelligence: A short survey”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–7. DOI: 10.1109/ssci.2017.8285310. URL: http://dx.doi.org/10.1109/ssci.2017.8285310.
[10] W. Dzik, J. Jarvinen, and M. Kondo. “Characterizing intermediate tense logics in terms of Galois connections”. In: Logic Journal of IGPL 22.6 (Jul. 2014), p. 992–1018. ISSN: 1368-9894. DOI: 10.1093/jigpal/jzu024. URL: http://dx.doi.org/10.1093/jigpal/jzu024.
[11] S. Ferré, M. Huchard, M. Kaytoue, et al. “Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing”. In: A Guided Tour of Artificial Intelligence Research. Springer International Publishing, 2020, p. 411–445. ISBN: 9783030061678. DOI: 10.1007/978-3-030-06167-8_13. URL: http://dx.doi.org/10.1007/978-3-030-06167-8_13.
[12] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions”. In: Rough Sets and Current Trends in Soft Computing. Springer International Publishing, 2014, p. 211–221. ISBN: 9783319086446. DOI: 10.1007/978-3-319-08644-6_22. URL: http://dx.doi.org/10.1007/978-3-319-08644-6_22.
[13] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Closure Systems and Adjunctions Between Fuzzy Preordered Sets”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 114–127. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_7. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_7.
[14] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On the Existence of Isotone Galois Connections between Preorders”. In: Formal Concept Analysis. Springer International Publishing, 2014, p. 67–79. ISBN: 9783319072487. DOI: 10.1007/978-3-319-07248-7_6. URL: http://dx.doi.org/10.1007/978-3-319-07248-7_6.
[15] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “Generating Isotone Galois Connections on an Unstructured Codomain”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2014, p. 91–99. ISBN: 9783319088525. DOI: 10.1007/978-3-319-08852-5_10. URL: http://dx.doi.org/10.1007/978-3-319-08852-5_10.
[16] F. García-Pardo, I. Cabrera, P. Cordero, et al. “On the definition of suitable orderings to generate adjunctions over an unstructured codomain”. In: Information Sciences 286 (Dec. 2014), p. 173–187. ISSN: 0020-0255. DOI: 10.1016/j.ins.2014.07.006. URL: http://dx.doi.org/10.1016/j.ins.2014.07.006.
[17] E. K. Horváth, S. Radeleczki, B. Šešelja, et al. “Cuts of poset-valued functions in the framework of residuated maps”. In: Fuzzy Sets and Systems 397 (Oct. 2020), p. 28–40. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.003. URL: http://dx.doi.org/10.1016/j.fss.2020.01.003.
[18] N. Madrid and M. Ojeda-Aciego. “On Contradiction and Inclusion Using Functional Degrees”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 464. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200409.001. URL: http://dx.doi.org/10.2991/ijcis.d.200409.001.
[19] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Fuzzy closure structures as formal concepts”. In: Fuzzy Sets and Systems 463 (Jul. 2023), p. 108458. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.12.014. URL: http://dx.doi.org/10.1016/j.fss.2022.12.014.
[20] S. Rasouli. “Quasicomplemented residuated lattices”. In: Soft Computing 24.9 (Feb. 2020), p. 6591–6602. ISSN: 1433-7479. DOI: 10.1007/s00500-020-04778-y. URL: http://dx.doi.org/10.1007/s00500-020-04778-y.
[21] S. Rasouli and A. Dehghani. “Mp- and purified residuated lattices”. In: Soft Computing 27.1 (Oct. 2022), p. 131–148. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07583-x. URL: http://dx.doi.org/10.1007/s00500-022-07583-x.
[22] S. Rasouli and A. Dehghani. “The hull-kernel topology on prime filters in residuated lattices”. In: Soft Computing 25.16 (Jul. 2021), p. 10519–10541. ISSN: 1433-7479. DOI: 10.1007/s00500-021-05985-x. URL: http://dx.doi.org/10.1007/s00500-021-05985-x.
[23] S. Rasouli and A. Dehghani. The hull-kernel topology on residuated lattices. 2018. DOI: 10.48550/ARXIV.1812.11510. URL: https://arxiv.org/abs/1812.11510.
[24] B. Šešelja and A. Tepavčević. “Kernels of Residuated Maps as Complete Congruences in Lattices”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 966. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200714.001. URL: http://dx.doi.org/10.2991/ijcis.d.200714.001.
[25] F. J. Valverde-Albacete, C. Peláez-Moreno, I. P. Cabrera, et al. “Formal Independence Analysis”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. Springer International Publishing, 2018, p. 596–608. ISBN: 9783319914732. DOI: 10.1007/978-3-319-91473-2_51. URL: http://dx.doi.org/10.1007/978-3-319-91473-2_51.