On Galois Connections and Soft Computing

Authors
Published

1 January 2013

Publication details

Advances in Computational Intelligence - 12th International Work-Conference on Artificial Neural Networks, {IWANN} 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part {II} , Lecture Notes in Computer Science vol. 7903, pages 224–235.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Gar+13] F. Garc'-Pardo, I. P. Cabrera, P. Cordero, et al. “On Galois Connections and Soft Computing”. In: Advances in Computational Intelligence - 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II. Ed. by I. Rojas, G. J. Caparrós and J. Cabestany. Vol. 7903. Lecture Notes in Computer Science. Springer, 2013, pp. 224-235. DOI: 10.1007/978-3-642-38682-4_26. URL: https://doi.org/10.1007/978-3-642-38682-4_26.

@InProceedings{GarciaPardo2013,
     author = {Francisca Garc'-Pardo and Inma P. Cabrera and Pablo Cordero and Manuel Ojeda-Aciego},
     booktitle = {Advances in Computational Intelligence - 12th International Work-Conference on Artificial Neural Networks, {IWANN} 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part {II}},
     title = {On Galois Connections and Soft Computing},
     year = {2013},
     editor = {Ignacio Rojas and Gonzalo Joya Caparr{’o}s and Joan Cabestany},
     pages = {224–235},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {7903},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/iwann/Garcia-PardoCCO13.bib},
     doi = {10.1007/978-3-642-38682-4_26},
     timestamp = {Sat, 30 Sep 2023 01:00:00 +0200},
     url = {https://doi.org/10.1007/978-3-642-38682-4_26},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 17
  • Scopus - Citation Indexes: 35
  • Captures
  • Mendeley - Readers: 12

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

202320222021202020192018201720162015201402468
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] I. P. Cabrera, P. Cordero, F. Garcia-Pardo, et al. “Galois Connections Between a Fuzzy Preordered Structure and a General Fuzzy Structure”. In: IEEE Transactions on Fuzzy Systems 26.3 (Jun. 2018), p. 1274–1287. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2017.2718495. URL: http://dx.doi.org/10.1109/tfuzz.2017.2718495.

[2] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “A Relational Extension of Galois Connections”. In: Formal Concept Analysis. Springer International Publishing, 2019, p. 290–303. ISBN: 9783030214623. DOI: 10.1007/978-3-030-21462-3_19. URL: http://dx.doi.org/10.1007/978-3-030-21462-3_19.

[3] I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, et al. “Relational Galois connections between transitive digraphs: Characterization and construction”. In: Information Sciences 519 (May. 2020), p. 439–450. ISSN: 0020-0255. DOI: 10.1016/j.ins.2020.01.034. URL: http://dx.doi.org/10.1016/j.ins.2020.01.034.

[4] I. P. Cabrera, P. Cordero, E. Muñoz‐Velasco, et al. “Relational Galois connections between transitive fuzzy digraphs”. In: Mathematical Methods in the Applied Sciences 43.9 (Feb. 2020), p. 5673–5680. ISSN: 1099-1476. DOI: 10.1002/mma.6302. URL: http://dx.doi.org/10.1002/mma.6302.

[5] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “On fuzzy relations, adjunctions, and functional fuzzy relations”. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Dec. 2016, p. 1–7. DOI: 10.1109/ssci.2016.7850149. URL: http://dx.doi.org/10.1109/ssci.2016.7850149.

[6] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Relational fuzzy Galois connections”. In: 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). IEEE, Jun. 2017, p. 1–6. DOI: 10.1109/ifsa-scis.2017.8023288. URL: http://dx.doi.org/10.1109/ifsa-scis.2017.8023288.

[7] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Towards relational fuzzy adjunctions”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–5. DOI: 10.1109/fuzz-ieee.2017.8015677. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015677.

[8] I. Cabrera, P. Cordero, F. García-Pardo, et al. “On the construction of adjunctions between a fuzzy preposet and an unstructured set”. In: Fuzzy Sets and Systems 320 (Aug. 2017), p. 81–92. ISSN: 0165-0114. DOI: 10.1016/j.fss.2016.09.013. URL: http://dx.doi.org/10.1016/j.fss.2016.09.013.

[9] I. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Galois connections in computational intelligence: A short survey”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–7. DOI: 10.1109/ssci.2017.8285310. URL: http://dx.doi.org/10.1109/ssci.2017.8285310.

[10] W. Dzik, J. Jarvinen, and M. Kondo. “Characterizing intermediate tense logics in terms of Galois connections”. In: Logic Journal of IGPL 22.6 (Jul. 2014), p. 992–1018. ISSN: 1368-9894. DOI: 10.1093/jigpal/jzu024. URL: http://dx.doi.org/10.1093/jigpal/jzu024.

[11] S. Ferré, M. Huchard, M. Kaytoue, et al. “Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing”. In: A Guided Tour of Artificial Intelligence Research. Springer International Publishing, 2020, p. 411–445. ISBN: 9783030061678. DOI: 10.1007/978-3-030-06167-8_13. URL: http://dx.doi.org/10.1007/978-3-030-06167-8_13.

[12] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions”. In: Rough Sets and Current Trends in Soft Computing. Springer International Publishing, 2014, p. 211–221. ISBN: 9783319086446. DOI: 10.1007/978-3-319-08644-6_22. URL: http://dx.doi.org/10.1007/978-3-319-08644-6_22.

[13] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On Closure Systems and Adjunctions Between Fuzzy Preordered Sets”. In: Formal Concept Analysis. Springer International Publishing, 2015, p. 114–127. ISBN: 9783319195452. DOI: 10.1007/978-3-319-19545-2_7. URL: http://dx.doi.org/10.1007/978-3-319-19545-2_7.

[14] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “On the Existence of Isotone Galois Connections between Preorders”. In: Formal Concept Analysis. Springer International Publishing, 2014, p. 67–79. ISBN: 9783319072487. DOI: 10.1007/978-3-319-07248-7_6. URL: http://dx.doi.org/10.1007/978-3-319-07248-7_6.

[15] F. García-Pardo, I. P. Cabrera, P. Cordero, et al. “Generating Isotone Galois Connections on an Unstructured Codomain”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2014, p. 91–99. ISBN: 9783319088525. DOI: 10.1007/978-3-319-08852-5_10. URL: http://dx.doi.org/10.1007/978-3-319-08852-5_10.

[16] F. García-Pardo, I. Cabrera, P. Cordero, et al. “On the definition of suitable orderings to generate adjunctions over an unstructured codomain”. In: Information Sciences 286 (Dec. 2014), p. 173–187. ISSN: 0020-0255. DOI: 10.1016/j.ins.2014.07.006. URL: http://dx.doi.org/10.1016/j.ins.2014.07.006.

[17] E. K. Horváth, S. Radeleczki, B. Šešelja, et al. “Cuts of poset-valued functions in the framework of residuated maps”. In: Fuzzy Sets and Systems 397 (Oct. 2020), p. 28–40. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.01.003. URL: http://dx.doi.org/10.1016/j.fss.2020.01.003.

[18] N. Madrid and M. Ojeda-Aciego. “On Contradiction and Inclusion Using Functional Degrees”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 464. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200409.001. URL: http://dx.doi.org/10.2991/ijcis.d.200409.001.

[19] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, et al. “Fuzzy closure structures as formal concepts”. In: Fuzzy Sets and Systems 463 (Jul. 2023), p. 108458. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.12.014. URL: http://dx.doi.org/10.1016/j.fss.2022.12.014.

[20] S. Rasouli. “Quasicomplemented residuated lattices”. In: Soft Computing 24.9 (Feb. 2020), p. 6591–6602. ISSN: 1433-7479. DOI: 10.1007/s00500-020-04778-y. URL: http://dx.doi.org/10.1007/s00500-020-04778-y.

[21] S. Rasouli and A. Dehghani. “Mp- and purified residuated lattices”. In: Soft Computing 27.1 (Oct. 2022), p. 131–148. ISSN: 1433-7479. DOI: 10.1007/s00500-022-07583-x. URL: http://dx.doi.org/10.1007/s00500-022-07583-x.

[22] S. Rasouli and A. Dehghani. “The hull-kernel topology on prime filters in residuated lattices”. In: Soft Computing 25.16 (Jul. 2021), p. 10519–10541. ISSN: 1433-7479. DOI: 10.1007/s00500-021-05985-x. URL: http://dx.doi.org/10.1007/s00500-021-05985-x.

[23] S. Rasouli and A. Dehghani. The hull-kernel topology on residuated lattices. 2018. DOI: 10.48550/ARXIV.1812.11510. URL: https://arxiv.org/abs/1812.11510.

[24] B. Šešelja and A. Tepavčević. “Kernels of Residuated Maps as Complete Congruences in Lattices”. In: International Journal of Computational Intelligence Systems 13.1 (2020), p. 966. ISSN: 1875-6883. DOI: 10.2991/ijcis.d.200714.001. URL: http://dx.doi.org/10.2991/ijcis.d.200714.001.

[25] F. J. Valverde-Albacete, C. Peláez-Moreno, I. P. Cabrera, et al. “Formal Independence Analysis”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. Springer International Publishing, 2018, p. 596–608. ISBN: 9783319914732. DOI: 10.1007/978-3-319-91473-2_51. URL: http://dx.doi.org/10.1007/978-3-319-91473-2_51.