On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs

uncategorised
Authors

Nicolás Madrid

Manuel Ojeda-Aciego

Published

1 January 2009

Publication details

Fuzzy Logic and Applications, 8th International Workshop, {WILF} 2009, Palermo, Italy, June 9-12, 2009, Proceedings , Lecture Notes in Computer Science vol. 5571, pages 60–67.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[MO09] N. Madrid and M. Ojeda-Aciego. “On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs”. In: Fuzzy Logic and Applications, 8th International Workshop, WILF 2009, Palermo, Italy, June 9-12, 2009, Proceedings. Ed. by V. D. Gesù, S. K. Pal and A. Petrosino. Vol. 5571. Lecture Notes in Computer Science. Springer, 2009, pp. 60-67. DOI: 10.1007/978-3-642-02282-1_8. URL: https://doi.org/10.1007/978-3-642-02282-1_8.

@InProceedings{Madrid2009a,
     author = {Nicol{’a}s Madrid and Manuel Ojeda-Aciego},
     booktitle = {Fuzzy Logic and Applications, 8th International Workshop, {WILF} 2009, Palermo, Italy, June 9-12, 2009, Proceedings},
     title = {On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs},
     year = {2009},
     editor = {Vito Di Ges{`u} and Sankar K. Pal and Alfredo Petrosino},
     pages = {60–67},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {5571},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/wilf/MadridO09.bib},
     doi = {10.1007/978-3-642-02282-1_8},
     timestamp = {Mon, 03 Jan 2022 00:00:00 +0100},
     url = {https://doi.org/10.1007/978-3-642-02282-1_8},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20192017201420132012012345
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “A measure of contradiction based on the notion of N-weak-contradiction”. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2013, p. 1–6. DOI: 10.1109/fuzz-ieee.2013.6622563. URL: http://dx.doi.org/10.1109/fuzz-ieee.2013.6622563.

[2] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “The Notion of Weak-Contradiction: Definition and Measures”. In: IEEE Transactions on Fuzzy Systems 23.4 (Aug. 2015), p. 1057–1069. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2014.2337934. URL: http://dx.doi.org/10.1109/tfuzz.2014.2337934.

[3] M. E. Cornejo, D. Lobo, and J. Medina. “Extended multi-adjoint logic programming”. In: Fuzzy Sets and Systems 388 (Jun. 2020), p. 124–145. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.03.016. URL: http://dx.doi.org/10.1016/j.fss.2019.03.016.

[4] M. E. Cornejo, D. Lobo, and J. Medina. “Measuring the Incoherent Information in Multi-adjoint Normal Logic Programs”. In: Advances in Fuzzy Logic and Technology 2017. Springer International Publishing, Sep. 2017, p. 521–533. ISBN: 9783319668307. DOI: 10.1007/978-3-319-66830-7_47. URL: http://dx.doi.org/10.1007/978-3-319-66830-7_47.

[5] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.

[6] C. V. Damásio, N. Madrid, and M. Ojeda-Aciego. “On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2011, p. 115–122. ISBN: 9783642237133. DOI: 10.1007/978-3-642-23713-3_15. URL: http://dx.doi.org/10.1007/978-3-642-23713-3_15.

[7] D. Dubois, L. Godo, and H. Prade. “Weighted logics for artificial intelligence – an introductory discussion”. In: International Journal of Approximate Reasoning 55.9 (Dec. 2014), p. 1819–1829. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2014.08.002. URL: http://dx.doi.org/10.1016/j.ijar.2014.08.002.

[8] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.

[9] J. Janssen, S. Schockaert, D. Vermeir, et al. “Aggregated Fuzzy Answer Set Programming”. In: Annals of Mathematics and Artificial Intelligence 63.2 (Aug. 2011), p. 103–147. ISSN: 1573-7470. DOI: 10.1007/s10472-011-9256-8. URL: http://dx.doi.org/10.1007/s10472-011-9256-8.

[10] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.

[11] J. Lee and Y. Wang. “Stable Models of Fuzzy Propositional Formulas”. In: Logics in Artificial Intelligence. Springer International Publishing, 2014, p. 326–339. ISBN: 9783319115580. DOI: 10.1007/978-3-319-11558-0_23. URL: http://dx.doi.org/10.1007/978-3-319-11558-0_23.

[12] N. Madrid and M. Ojeda-Aciego. “Measuring Inconsistency in Fuzzy Answer Set Semantics”. In: IEEE Transactions on Fuzzy Systems 19.4 (Aug. 2011), p. 605–622. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2011.2114669. URL: http://dx.doi.org/10.1109/tfuzz.2011.2114669.

[13] N. Madrid and M. Ojeda-Aciego. “Measuring instability in normal residuated logic programs: Adding information”. In: International Conference on Fuzzy Systems. IEEE, Jul. 2010, p. 1–7. DOI: 10.1109/fuzzy.2010.5584819. URL: http://dx.doi.org/10.1109/fuzzy.2010.5584819.

[14] N. Madrid and M. Ojeda-Aciego. “Measuring Instability in Normal Residuated Logic Programs: Discarding Information”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. Springer Berlin Heidelberg, 2010, p. 128–137. ISBN: 9783642140556. DOI: 10.1007/978-3-642-14055-6_14. URL: http://dx.doi.org/10.1007/978-3-642-14055-6_14.

[15] N. Madrid and M. Ojeda-Aciego. “Modelling fuzzy partitions with fuzzy answer sets”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–8. DOI: 10.1109/ssci.2017.8285308. URL: http://dx.doi.org/10.1109/ssci.2017.8285308.

[16] N. Madrid and M. Ojeda-Aciego. “On least coherence-preserving negations”. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS). IEEE, Aug. 2012, p. 1–6. DOI: 10.1109/nafips.2012.6290981. URL: http://dx.doi.org/10.1109/nafips.2012.6290981.

[17] N. Madrid and M. Ojeda-Aciego. “On the existence and unicity of stable models in normal residuated logic programs”. In: International Journal of Computer Mathematics 89.3 (Feb. 2012), p. 310–324. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.580842. URL: http://dx.doi.org/10.1080/00207160.2011.580842.

[18] N. Madrid and M. Ojeda-Aciego. “On the measure of incoherence in extended residuated logic programs”. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, Aug. 2009, p. 598–603. DOI: 10.1109/fuzzy.2009.5277277. URL: http://dx.doi.org/10.1109/fuzzy.2009.5277277.

[19] N. Madrid and M. Ojeda-Aciego. “On the use of fuzzy stable models for inconsistent classical logic programs”. In: 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI). IEEE, Apr. 2011, p. 115–121. DOI: 10.1109/foci.2011.5949476. URL: http://dx.doi.org/10.1109/foci.2011.5949476.