On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs

uncategorised
Authors

Nicolás Madrid

Manuel Ojeda-Aciego

Published

1 January 2009

Publication details

Fuzzy Logic and Applications, 8th International Workshop, {WILF} 2009, Palermo, Italy, June 9-12, 2009, Proceedings , Lecture Notes in Computer Science vol. 5571, pages 60–67.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[MO09] N. Madrid and M. Ojeda-Aciego. “On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs”. In: Fuzzy Logic and Applications, 8th International Workshop, WILF 2009, Palermo, Italy, June 9-12, 2009, Proceedings. Ed. by V. D. Gesù, S. K. Pal and A. Petrosino. Vol. 5571. Lecture Notes in Computer Science. Springer, 2009, pp. 60-67. DOI: 10.1007/978-3-642-02282-1_8. URL: https://doi.org/10.1007/978-3-642-02282-1_8.

@InProceedings{Madrid2009a,
     author = {Nicol{’a}s Madrid and Manuel Ojeda-Aciego},
     booktitle = {Fuzzy Logic and Applications, 8th International Workshop, {WILF} 2009, Palermo, Italy, June 9-12, 2009, Proceedings},
     title = {On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs},
     year = {2009},
     editor = {Vito Di Ges{`u} and Sankar K. Pal and Alfredo Petrosino},
     pages = {60–67},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {5571},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/wilf/MadridO09.bib},
     doi = {10.1007/978-3-642-02282-1_8},
     timestamp = {Mon, 03 Jan 2022 00:00:00 +0100},
     url = {https://doi.org/10.1007/978-3-642-02282-1_8},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 12
  • Scopus - Citation Indexes: 20
  • Captures
  • Mendeley - Readers: 4

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20192017201420132012012345
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “A measure of contradiction based on the notion of N-weak-contradiction”. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2013, p. 1–6. DOI: 10.1109/fuzz-ieee.2013.6622563. URL: http://dx.doi.org/10.1109/fuzz-ieee.2013.6622563.

[2] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “The Notion of Weak-Contradiction: Definition and Measures”. In: IEEE Transactions on Fuzzy Systems 23.4 (Aug. 2015), p. 1057–1069. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2014.2337934. URL: http://dx.doi.org/10.1109/tfuzz.2014.2337934.

[3] M. E. Cornejo, D. Lobo, and J. Medina. “Extended multi-adjoint logic programming”. In: Fuzzy Sets and Systems 388 (Jun. 2020), p. 124–145. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.03.016. URL: http://dx.doi.org/10.1016/j.fss.2019.03.016.

[4] M. E. Cornejo, D. Lobo, and J. Medina. “Measuring the Incoherent Information in Multi-adjoint Normal Logic Programs”. In: Advances in Fuzzy Logic and Technology 2017. Springer International Publishing, Sep. 2017, p. 521–533. ISBN: 9783319668307. DOI: 10.1007/978-3-319-66830-7_47. URL: http://dx.doi.org/10.1007/978-3-319-66830-7_47.

[5] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.

[6] C. V. Damásio, N. Madrid, and M. Ojeda-Aciego. “On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2011, p. 115–122. ISBN: 9783642237133. DOI: 10.1007/978-3-642-23713-3_15. URL: http://dx.doi.org/10.1007/978-3-642-23713-3_15.

[7] D. Dubois, L. Godo, and H. Prade. “Weighted logics for artificial intelligence – an introductory discussion”. In: International Journal of Approximate Reasoning 55.9 (Dec. 2014), p. 1819–1829. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2014.08.002. URL: http://dx.doi.org/10.1016/j.ijar.2014.08.002.

[8] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.

[9] J. Janssen, S. Schockaert, D. Vermeir, et al. “Aggregated Fuzzy Answer Set Programming”. In: Annals of Mathematics and Artificial Intelligence 63.2 (Aug. 2011), p. 103–147. ISSN: 1573-7470. DOI: 10.1007/s10472-011-9256-8. URL: http://dx.doi.org/10.1007/s10472-011-9256-8.

[10] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.

[11] J. Lee and Y. Wang. “Stable Models of Fuzzy Propositional Formulas”. In: Logics in Artificial Intelligence. Springer International Publishing, 2014, p. 326–339. ISBN: 9783319115580. DOI: 10.1007/978-3-319-11558-0_23. URL: http://dx.doi.org/10.1007/978-3-319-11558-0_23.

[12] N. Madrid and M. Ojeda-Aciego. “Measuring Inconsistency in Fuzzy Answer Set Semantics”. In: IEEE Transactions on Fuzzy Systems 19.4 (Aug. 2011), p. 605–622. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2011.2114669. URL: http://dx.doi.org/10.1109/tfuzz.2011.2114669.

[13] N. Madrid and M. Ojeda-Aciego. “Measuring instability in normal residuated logic programs: Adding information”. In: International Conference on Fuzzy Systems. IEEE, Jul. 2010, p. 1–7. DOI: 10.1109/fuzzy.2010.5584819. URL: http://dx.doi.org/10.1109/fuzzy.2010.5584819.

[14] N. Madrid and M. Ojeda-Aciego. “Measuring Instability in Normal Residuated Logic Programs: Discarding Information”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. Springer Berlin Heidelberg, 2010, p. 128–137. ISBN: 9783642140556. DOI: 10.1007/978-3-642-14055-6_14. URL: http://dx.doi.org/10.1007/978-3-642-14055-6_14.

[15] N. Madrid and M. Ojeda-Aciego. “Modelling fuzzy partitions with fuzzy answer sets”. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, Nov. 2017, p. 1–8. DOI: 10.1109/ssci.2017.8285308. URL: http://dx.doi.org/10.1109/ssci.2017.8285308.

[16] N. Madrid and M. Ojeda-Aciego. “On least coherence-preserving negations”. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS). IEEE, Aug. 2012, p. 1–6. DOI: 10.1109/nafips.2012.6290981. URL: http://dx.doi.org/10.1109/nafips.2012.6290981.

[17] N. Madrid and M. Ojeda-Aciego. “On the existence and unicity of stable models in normal residuated logic programs”. In: International Journal of Computer Mathematics 89.3 (Feb. 2012), p. 310–324. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.580842. URL: http://dx.doi.org/10.1080/00207160.2011.580842.

[18] N. Madrid and M. Ojeda-Aciego. “On the measure of incoherence in extended residuated logic programs”. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, Aug. 2009, p. 598–603. DOI: 10.1109/fuzzy.2009.5277277. URL: http://dx.doi.org/10.1109/fuzzy.2009.5277277.

[19] N. Madrid and M. Ojeda-Aciego. “On the use of fuzzy stable models for inconsistent classical logic programs”. In: 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI). IEEE, Apr. 2011, p. 115–121. DOI: 10.1109/foci.2011.5949476. URL: http://dx.doi.org/10.1109/foci.2011.5949476.