Towards a Fuzzy Answer Set Semantics for Residuated Logic Programs
Abstract
In this work we introduce the first steps towards the definition of an answer set semantics for residuated logic programs with negation.
Citation
Please, cite this work as:
[MO08] N. Madrid and M. Ojeda-Aciego. “Towards a Fuzzy Answer Set Semantics for Residuated Logic Programs”. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and International Conference on Intelligent Agent Technology - Workshops, 9-12 December 2008, Sydney, NSW, Australia. IEEE Computer Society, 2008, pp. 260-264. DOI: 10.1109/WIIAT.2008.357. URL: https://doi.org/10.1109/WIIAT.2008.357.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] K. Bauters, S. Schockaert, M. De Cock, et al. Possibilistic Answer Set Programming Revisited. 2012. DOI: 10.48550/ARXIV.1203.3466. URL: https://arxiv.org/abs/1203.3466.
[2] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “A measure of contradiction based on the notion of N-weak-contradiction”. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2013, p. 1–6. DOI: 10.1109/fuzz-ieee.2013.6622563. URL: http://dx.doi.org/10.1109/fuzz-ieee.2013.6622563.
[3] H. Bustince, N. Madrid, and M. Ojeda-Aciego. “The Notion of Weak-Contradiction: Definition and Measures”. In: IEEE Transactions on Fuzzy Systems 23.4 (Aug. 2015), p. 1057–1069. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2014.2337934. URL: http://dx.doi.org/10.1109/tfuzz.2014.2337934.
[4] M. E. Cornejo, D. Lobo, and J. Medina. “Relating Multi-Adjoint Normal Logic Programs to Core Fuzzy Answer Set Programs from a Semantical Approach”. In: Mathematics 8.6 (Jun. 2020), p. 881. ISSN: 2227-7390. DOI: 10.3390/math8060881. URL: http://dx.doi.org/10.3390/math8060881.
[5] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.
[6] C. V. Damásio, N. Madrid, and M. Ojeda-Aciego. “On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2011, p. 115–122. ISBN: 9783642237133. DOI: 10.1007/978-3-642-23713-3_15. URL: http://dx.doi.org/10.1007/978-3-642-23713-3_15.
[7] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.
[8] J. Janssen, S. Schockaert, D. Vermeir, et al. “Aggregated Fuzzy Answer Set Programming”. In: Annals of Mathematics and Artificial Intelligence 63.2 (Aug. 2011), p. 103–147. ISSN: 1573-7470. DOI: 10.1007/s10472-011-9256-8. URL: http://dx.doi.org/10.1007/s10472-011-9256-8.
[9] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.
[10] J. Lee and Y. Wang. “Stable Models of Fuzzy Propositional Formulas”. In: Logics in Artificial Intelligence. Springer International Publishing, 2014, p. 326–339. ISBN: 9783319115580. DOI: 10.1007/978-3-319-11558-0_23. URL: http://dx.doi.org/10.1007/978-3-319-11558-0_23.
[11] N. Madrid. “A sufficient condition to guarantee the existence of fuzzy stable models on residuated logic programming with constrains”. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2017, p. 1–6. DOI: 10.1109/fuzz-ieee.2017.8015741. URL: http://dx.doi.org/10.1109/fuzz-ieee.2017.8015741.
[12] N. Madrid and M. Ojeda-Aciego. “Measuring Inconsistency in Fuzzy Answer Set Semantics”. In: IEEE Transactions on Fuzzy Systems 19.4 (Aug. 2011), p. 605–622. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2011.2114669. URL: http://dx.doi.org/10.1109/tfuzz.2011.2114669.
[13] N. Madrid and M. Ojeda-Aciego. “Measuring instability in normal residuated logic programs: Adding information”. In: International Conference on Fuzzy Systems. IEEE, Jul. 2010, p. 1–7. DOI: 10.1109/fuzzy.2010.5584819. URL: http://dx.doi.org/10.1109/fuzzy.2010.5584819.
[14] N. Madrid and M. Ojeda-Aciego. “Measuring Instability in Normal Residuated Logic Programs: Discarding Information”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. Springer Berlin Heidelberg, 2010, p. 128–137. ISBN: 9783642140556. DOI: 10.1007/978-3-642-14055-6_14. URL: http://dx.doi.org/10.1007/978-3-642-14055-6_14.
[15] N. Madrid and M. Ojeda-Aciego. “On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2009, p. 60–67. ISBN: 9783642022821. DOI: 10.1007/978-3-642-02282-1_8. URL: http://dx.doi.org/10.1007/978-3-642-02282-1_8.
[16] N. Madrid and M. Ojeda-Aciego. “On least coherence-preserving negations”. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS). IEEE, Aug. 2012, p. 1–6. DOI: 10.1109/nafips.2012.6290981. URL: http://dx.doi.org/10.1109/nafips.2012.6290981.
[17] N. Madrid and M. Ojeda-Aciego. “On the existence and unicity of stable models in normal residuated logic programs”. In: International Journal of Computer Mathematics 89.3 (Feb. 2012), p. 310–324. ISSN: 1029-0265. DOI: 10.1080/00207160.2011.580842. URL: http://dx.doi.org/10.1080/00207160.2011.580842.
[18] N. Madrid and M. Ojeda-Aciego. “On the measure of incoherence in extended residuated logic programs”. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, Aug. 2009, p. 598–603. DOI: 10.1109/fuzzy.2009.5277277. URL: http://dx.doi.org/10.1109/fuzzy.2009.5277277.
[19] N. Madrid and M. Ojeda-Aciego. “On the use of fuzzy stable models for inconsistent classical logic programs”. In: 2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI). IEEE, Apr. 2011, p. 115–121. DOI: 10.1109/foci.2011.5949476. URL: http://dx.doi.org/10.1109/foci.2011.5949476.
[20] M. Mushthofa, S. Schockaert, L. Hung, et al. “Modeling multi-valued biological interaction networks using fuzzy answer set programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 63–82. ISSN: 0165-0114. DOI: 10.1016/j.fss.2018.01.003. URL: http://dx.doi.org/10.1016/j.fss.2018.01.003.
[21] E. Saad. “Disjunctive Fuzzy Logic Programs with Fuzzy Answer Set Semantics”. In: Scalable Uncertainty Management. Springer Berlin Heidelberg, 2010, p. 306–318. ISBN: 9783642159510. DOI: 10.1007/978-3-642-15951-0_29. URL: http://dx.doi.org/10.1007/978-3-642-15951-0_29.
[22] E. Saad. “Extended Fuzzy Logic Programs with Fuzzy Answer Set Semantics”. In: Scalable Uncertainty Management. Springer Berlin Heidelberg, 2009, p. 223–239. ISBN: 9783642043888. DOI: 10.1007/978-3-642-04388-8_18. URL: http://dx.doi.org/10.1007/978-3-642-04388-8_18.
