An {ATP} of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance
Abstract
Citation
Please, cite this work as:
[GMM08] J. Golinska-Pilarek, Á. Mora, and E. Mu~noz-Velasco. “An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance”. In: PRICAI 2008: Trends in Artificial Intelligence, 10th Pacific Rim International Conference on Artificial Intelligence, Hanoi, Vietnam, December 15-19, 2008. Proceedings. Ed. by T. B. Ho and Z. Zhou. Vol. 5351. Lecture Notes in Computer Science. Springer, 2008, pp. 128-139. DOI: 10.1007/978-3-540-89197-0_15. URL: https://doi.org/10.1007/978-3-540-89197-0_15.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] A. Burrieza, A. Mora, M. Ojeda-Aciego, et al. “An implementation of a dual tableaux system for order-of-magnitude qualitative reasoning”. In: International Journal of Computer Mathematics 86.10–11 (Nov. 2009), p. 1852–1866. ISSN: 1029-0265. DOI: 10.1080/00207160902777906. URL: http://dx.doi.org/10.1080/00207160902777906.
[2] A. Burrieza, E. Muñoz-Velasco, and M. Ojeda-Aciego. “Logics for Order-of-Magnitude Qualitative Reasoning: Formalizing Negligibility”. In: Ewa Orłowska on Relational Methods in Logic and Computer Science. Springer International Publishing, 2018, p. 203–231. ISBN: 9783319978796. DOI: 10.1007/978-3-319-97879-6_8. URL: http://dx.doi.org/10.1007/978-3-319-97879-6_8.
[3] A. BURRIEZA, E. MUÑOZ-VELASCO, and M. OJEDA-ACIEGO. “A PDL APPROACH FOR QUALITATIVE VELOCITY”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 19.01 (Feb. 2011), p. 11–26. ISSN: 1793-6411. DOI: 10.1142/s021848851100685x. URL: http://dx.doi.org/10.1142/s021848851100685x.
[4] J. Goli ska-Pilarek and E. Munoz-Velasco. “A hybrid qualitative approach for relative movements”. In: Logic Journal of IGPL 23.3 (Apr. 2015), p. 410–420. ISSN: 1368-9894. DOI: 10.1093/jigpal/jzv012. URL: http://dx.doi.org/10.1093/jigpal/jzv012.
[5] J. Golińska-Pilarek. “On Decidability of a Logic for Order of Magnitude Qualitative Reasoning with Bidirectional Negligibility”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2012, p. 255–266. ISBN: 9783642333538. DOI: 10.1007/978-3-642-33353-8_20. URL: http://dx.doi.org/10.1007/978-3-642-33353-8_20.
[6] J. Golińska-Pilarek, A. Mora, and E. Muñoz-Velasco. “An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance”. In: PRICAI 2008: Trends in Artificial Intelligence. Springer Berlin Heidelberg, 2008, p. 128–139. ISBN: 9783540891970. DOI: 10.1007/978-3-540-89197-0_15. URL: http://dx.doi.org/10.1007/978-3-540-89197-0_15.
[7] J. Golinska-Pilarek and E. Munoz-Velasco. “Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance”. In: Logic Journal of IGPL 17.4 (Jun. 2009), p. 375–394. ISSN: 1368-9894. DOI: 10.1093/jigpal/jzp016. URL: http://dx.doi.org/10.1093/jigpal/jzp016.
[8] J. Golińska-Pilarek and E. Muñoz-Velasco. “Reasoning with Qualitative Velocity: Towards a Hybrid Approach”. In: Hybrid Artificial Intelligent Systems. Springer Berlin Heidelberg, 2012, p. 635–646. ISBN: 9783642289422. DOI: 10.1007/978-3-642-28942-2_57. URL: http://dx.doi.org/10.1007/978-3-642-28942-2_57.
[9] J. Golinska-Pilarek, E. Munoz-Velasco, and A. Mora. “A new deduction system for deciding validity in modal logic K”. In: Logic Journal of IGPL 19.2 (Jul. 2010), p. 425–434. ISSN: 1368-9894. DOI: 10.1093/jigpal/jzq033. URL: http://dx.doi.org/10.1093/jigpal/jzq033.
[10] J. Golińska-Pilarek and E. Orłowska. “Dual tableau for monoidal triangular norm logic MTL”. In: Fuzzy Sets and Systems 162.1 (Jan. 2011), p. 39–52. ISSN: 0165-0114. DOI: 10.1016/j.fss.2010.09.007. URL: http://dx.doi.org/10.1016/j.fss.2010.09.007.
[11] A. Mora, E. Muñoz-Velasco, and J. Golińska-Pilarek. “Implementing a relational theorem prover for modal logic”. In: International Journal of Computer Mathematics 88.9 (Jun. 2011), p. 1869–1884. ISSN: 1029-0265. DOI: 10.1080/00207160.2010.493211. URL: http://dx.doi.org/10.1080/00207160.2010.493211.
