Towards Biresiduated Multi-adjoint Logic Programming
Abstract
Citation
Please, cite this work as:
[Med+03] J. Medina, M. Ojeda-Aciego, Agust', et al. “Towards Biresiduated Multi-adjoint Logic Programming”. In: Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003, San Sebastian, Spain, November 12-14, 2003. Revised Selected Papers. Ed. by R. Conejo, M. Urretavizcaya and J. Pérez-de-la-Cruz. Vol. 3040. Lecture Notes in Computer Science. Springer, 2003, pp. 608-617. DOI: 10.1007/978-3-540-25945-9_60. URL: https://doi.org/10.1007/978-3-540-25945-9_60.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] Ľ. Antoni, P. Eliaš, S. Krajči, et al. “Heterogeneous formal context and its decomposition by heterogeneous fuzzy subsets”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 361–384. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.015. URL: http://dx.doi.org/10.1016/j.fss.2022.05.015.
[2] L. Antoni, S. Krajči, and O. Krídlo. “Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 21–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2015.12.007. URL: http://dx.doi.org/10.1016/j.fss.2015.12.007.
[3] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.
[4] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.
[5] L. Antoni, S. Krajči, O. Krídlo, et al. “On heterogeneous formal contexts”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 22–33. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.008. URL: http://dx.doi.org/10.1016/j.fss.2013.04.008.
[6] M. E. Cornejo Piñero, J. Medina-Moreno, and E. Ramírez-Poussa. “General Negations for Residuated Fuzzy Logics”. In: Rough Sets and Current Trends in Soft Computing. Springer International Publishing, 2014, p. 13–22. ISBN: 9783319086446. DOI: 10.1007/978-3-319-08644-6_2. URL: http://dx.doi.org/10.1007/978-3-319-08644-6_2.
[7] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.
[8] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint negations, more than residuated negations”. In: Information Sciences 345 (Jun. 2016), p. 355–371. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.01.038. URL: http://dx.doi.org/10.1016/j.ins.2016.01.038.
[9] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Multi-adjoint algebras versus non-commutative residuated structures”. In: International Journal of Approximate Reasoning 66 (Nov. 2015), p. 119–138. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2015.08.003. URL: http://dx.doi.org/10.1016/j.ijar.2015.08.003.
[10] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “On the use of thresholds in multi-adjoint concept lattices”. In: International Journal of Computer Mathematics 92.9 (Apr. 2014), p. 1855–1873. ISSN: 1029-0265. DOI: 10.1080/00207160.2014.896078. URL: http://dx.doi.org/10.1080/00207160.2014.896078.
[11] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Multi-adjoint Concept Lattices, Preferences and Bousi Prolog”. In: Rough Sets. Springer International Publishing, 2016, p. 331–341. ISBN: 9783319471600. DOI: 10.1007/978-3-319-47160-0_30. URL: http://dx.doi.org/10.1007/978-3-319-47160-0_30.
[12] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Preferences in discrete multi-adjoint formal concept analysis”. In: Information Sciences 650 (Dec. 2023), p. 119507. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.119507. URL: http://dx.doi.org/10.1016/j.ins.2023.119507.
[13] M. E. Cornejo, J. Medina, and E. Ramírez. “Implication Triples versus Adjoint Triples”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 453–460. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_57. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_57.
[14] C. Cornelis, J. Medina, and N. Verbiest. “Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection”. In: International Journal of Approximate Reasoning 55.1 (Jan. 2014), p. 412–426. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.09.007. URL: http://dx.doi.org/10.1016/j.ijar.2013.09.007.
[15] J. Díaz-Moreno, J. Medina, and M. Ojeda-Aciego. “On basic conditions to generate multi-adjoint concept lattices via Galois connections”. In: International Journal of General Systems 43.2 (Jan. 2014), p. 149–161. ISSN: 1563-5104. DOI: 10.1080/03081079.2013.879302. URL: http://dx.doi.org/10.1080/03081079.2013.879302.
[16] J. C. Díaz and J. Medina. “Multi-adjoint relation equations: Definition, properties and solutions using concept lattices”. In: Information Sciences 253 (Dec. 2013), p. 100–109. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.07.024. URL: http://dx.doi.org/10.1016/j.ins.2013.07.024.
[17] D. Lobo, V. López‐Marchante, and J. Medina. “On the impact of sup‐compositions in the resolution of multi‐adjoint relation equations”. In: Mathematical Methods in the Applied Sciences 46.14 (Jun. 2023), p. 15581–15598. ISSN: 1099-1476. DOI: 10.1002/mma.9414. URL: http://dx.doi.org/10.1002/mma.9414.
[18] J. Medina and M. Ojeda-Aciego. “Multi-adjoint t-concept lattices”. In: Information Sciences 180.5 (Mar. 2010), p. 712–725. ISSN: 0020-0255. DOI: 10.1016/j.ins.2009.11.018. URL: http://dx.doi.org/10.1016/j.ins.2009.11.018.
[19] J. Medina and M. Ojeda-Aciego. “On multi-adjoint concept lattices based on heterogeneous conjunctors”. In: Fuzzy Sets and Systems 208 (Dec. 2012), p. 95–110. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.02.008. URL: http://dx.doi.org/10.1016/j.fss.2012.02.008.
[20] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Formal concept analysis via multi-adjoint concept lattices”. In: Fuzzy Sets and Systems 160.2 (Jan. 2009), p. 130–144. ISSN: 0165-0114. DOI: 10.1016/j.fss.2008.05.004. URL: http://dx.doi.org/10.1016/j.fss.2008.05.004.
[21] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Relating generalized concept lattices and concept lattices for non-commutative conjunctors”. In: Applied Mathematics Letters 21.12 (Dec. 2008), p. 1296–1300. ISSN: 0893-9659. DOI: 10.1016/j.aml.2007.12.026. URL: http://dx.doi.org/10.1016/j.aml.2007.12.026.
[22] S. P. Tiwari, I. Perfilieva, and A. P. Singh. “GENERALIZED RESIDUATED LATTICES BASED F-TRANSFORM”. In: Iranian Journal of Fuzzy Systems 15.2 (Apr. 2018). DOI: 10.22111/ijfs.2018.3766. URL: https://doi.org/10.22111/ijfs.2018.3766.
