Towards Biresiduated Multi-adjoint Logic Programming

Authors

Jesús Medina

Manuel Ojeda-Aciego

Agustín Valverde

Peter Vojtás

Published

1 January 2003

Publication details

Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, {CAEPIA} 2003, and 5th Conference on Technology Transfer, {TTIA} 2003, San Sebastian, Spain, November 12-14, 2003. Revised Selected Papers , Lecture Notes in Computer Science vol. 3040, pages 608–617.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Med+03] J. Medina, M. Ojeda-Aciego, Agust', et al. “Towards Biresiduated Multi-adjoint Logic Programming”. In: Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003, San Sebastian, Spain, November 12-14, 2003. Revised Selected Papers. Ed. by R. Conejo, M. Urretavizcaya and J. Pérez-de-la-Cruz. Vol. 3040. Lecture Notes in Computer Science. Springer, 2003, pp. 608-617. DOI: 10.1007/978-3-540-25945-9_60. URL: https://doi.org/10.1007/978-3-540-25945-9_60.

@InProceedings{Medina2003,
     author = {Jes{’u}s Medina and Manuel Ojeda-Aciego and Agust'Valverde and Peter Vojt{’a}s},
     booktitle = {Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, {CAEPIA} 2003, and 5th Conference on Technology Transfer, {TTIA} 2003, San Sebastian, Spain, November 12-14, 2003. Revised Selected Papers},
     title = {Towards Biresiduated Multi-adjoint Logic Programming},
     year = {2003},
     editor = {Ricardo Conejo and Maite Urretavizcaya and Jos{’e}-Luis P{’e}rez-de-la-Cruz},
     pages = {608–617},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {3040},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/caepia/MedinaOVV03.bib},
     doi = {10.1007/978-3-540-25945-9_60},
     timestamp = {Thu, 07 Jan 2021 00:00:00 +0100},
     url = {https://doi.org/10.1007/978-3-540-25945-9_60},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 11
  • Scopus - Citation Indexes: 44
  • Captures
  • Mendeley - Readers: 6

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20232022202120202018201720162015201420132012012345
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] Ľ. Antoni, P. Eliaš, S. Krajči, et al. “Heterogeneous formal context and its decomposition by heterogeneous fuzzy subsets”. In: Fuzzy Sets and Systems 451 (Dec. 2022), p. 361–384. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.05.015. URL: http://dx.doi.org/10.1016/j.fss.2022.05.015.

[2] L. Antoni, S. Krajči, and O. Krídlo. “Constraint heterogeneous concept lattices and concept lattices with heterogeneous hedges”. In: Fuzzy Sets and Systems 303 (Nov. 2016), p. 21–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2015.12.007. URL: http://dx.doi.org/10.1016/j.fss.2015.12.007.

[3] L. Antoni, S. Krajči, and O. Krídlo. “On Fuzzy Generalizations of Concept Lattices”. In: Interactions Between Computational Intelligence and Mathematics. Springer International Publishing, 2018, p. 79–103. ISBN: 9783319746814. DOI: 10.1007/978-3-319-74681-4_6. URL: http://dx.doi.org/10.1007/978-3-319-74681-4_6.

[4] L. Antoni, S. Krajči, and O. Krídlo. “Representation of fuzzy subsets by Galois connections”. In: Fuzzy Sets and Systems 326 (Nov. 2017), p. 52–68. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.05.020. URL: http://dx.doi.org/10.1016/j.fss.2017.05.020.

[5] L. Antoni, S. Krajči, O. Krídlo, et al. “On heterogeneous formal contexts”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 22–33. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.008. URL: http://dx.doi.org/10.1016/j.fss.2013.04.008.

[6] M. E. Cornejo Piñero, J. Medina-Moreno, and E. Ramírez-Poussa. “General Negations for Residuated Fuzzy Logics”. In: Rough Sets and Current Trends in Soft Computing. Springer International Publishing, 2014, p. 13–22. ISBN: 9783319086446. DOI: 10.1007/978-3-319-08644-6_2. URL: http://dx.doi.org/10.1007/978-3-319-08644-6_2.

[7] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “A logical characterization of multi-adjoint algebras”. In: Fuzzy Sets and Systems 425 (Nov. 2021), p. 140–156. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.02.003. URL: http://dx.doi.org/10.1016/j.fss.2021.02.003.

[8] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Adjoint negations, more than residuated negations”. In: Information Sciences 345 (Jun. 2016), p. 355–371. ISSN: 0020-0255. DOI: 10.1016/j.ins.2016.01.038. URL: http://dx.doi.org/10.1016/j.ins.2016.01.038.

[9] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “Multi-adjoint algebras versus non-commutative residuated structures”. In: International Journal of Approximate Reasoning 66 (Nov. 2015), p. 119–138. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2015.08.003. URL: http://dx.doi.org/10.1016/j.ijar.2015.08.003.

[10] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa. “On the use of thresholds in multi-adjoint concept lattices”. In: International Journal of Computer Mathematics 92.9 (Apr. 2014), p. 1855–1873. ISSN: 1029-0265. DOI: 10.1080/00207160.2014.896078. URL: http://dx.doi.org/10.1080/00207160.2014.896078.

[11] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Multi-adjoint Concept Lattices, Preferences and Bousi Prolog”. In: Rough Sets. Springer International Publishing, 2016, p. 331–341. ISBN: 9783319471600. DOI: 10.1007/978-3-319-47160-0_30. URL: http://dx.doi.org/10.1007/978-3-319-47160-0_30.

[12] M. E. Cornejo, J. Medina, E. Ramírez-Poussa, et al. “Preferences in discrete multi-adjoint formal concept analysis”. In: Information Sciences 650 (Dec. 2023), p. 119507. ISSN: 0020-0255. DOI: 10.1016/j.ins.2023.119507. URL: http://dx.doi.org/10.1016/j.ins.2023.119507.

[13] M. E. Cornejo, J. Medina, and E. Ramírez. “Implication Triples versus Adjoint Triples”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 453–460. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_57. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_57.

[14] C. Cornelis, J. Medina, and N. Verbiest. “Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection”. In: International Journal of Approximate Reasoning 55.1 (Jan. 2014), p. 412–426. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.09.007. URL: http://dx.doi.org/10.1016/j.ijar.2013.09.007.

[15] J. Díaz-Moreno, J. Medina, and M. Ojeda-Aciego. “On basic conditions to generate multi-adjoint concept lattices via Galois connections”. In: International Journal of General Systems 43.2 (Jan. 2014), p. 149–161. ISSN: 1563-5104. DOI: 10.1080/03081079.2013.879302. URL: http://dx.doi.org/10.1080/03081079.2013.879302.

[16] J. C. Díaz and J. Medina. “Multi-adjoint relation equations: Definition, properties and solutions using concept lattices”. In: Information Sciences 253 (Dec. 2013), p. 100–109. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.07.024. URL: http://dx.doi.org/10.1016/j.ins.2013.07.024.

[17] D. Lobo, V. López‐Marchante, and J. Medina. “On the impact of sup‐compositions in the resolution of multi‐adjoint relation equations”. In: Mathematical Methods in the Applied Sciences 46.14 (Jun. 2023), p. 15581–15598. ISSN: 1099-1476. DOI: 10.1002/mma.9414. URL: http://dx.doi.org/10.1002/mma.9414.

[18] J. Medina and M. Ojeda-Aciego. “Multi-adjoint t-concept lattices”. In: Information Sciences 180.5 (Mar. 2010), p. 712–725. ISSN: 0020-0255. DOI: 10.1016/j.ins.2009.11.018. URL: http://dx.doi.org/10.1016/j.ins.2009.11.018.

[19] J. Medina and M. Ojeda-Aciego. “On multi-adjoint concept lattices based on heterogeneous conjunctors”. In: Fuzzy Sets and Systems 208 (Dec. 2012), p. 95–110. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.02.008. URL: http://dx.doi.org/10.1016/j.fss.2012.02.008.

[20] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Formal concept analysis via multi-adjoint concept lattices”. In: Fuzzy Sets and Systems 160.2 (Jan. 2009), p. 130–144. ISSN: 0165-0114. DOI: 10.1016/j.fss.2008.05.004. URL: http://dx.doi.org/10.1016/j.fss.2008.05.004.

[21] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Relating generalized concept lattices and concept lattices for non-commutative conjunctors”. In: Applied Mathematics Letters 21.12 (Dec. 2008), p. 1296–1300. ISSN: 0893-9659. DOI: 10.1016/j.aml.2007.12.026. URL: http://dx.doi.org/10.1016/j.aml.2007.12.026.

[22] S. P. Tiwari, I. Perfilieva, and A. P. Singh. “GENERALIZED RESIDUATED LATTICES BASED F-TRANSFORM”. In: Iranian Journal of Fuzzy Systems 15.2 (Apr. 2018). DOI: 10.22111/ijfs.2018.3766. URL: https://doi.org/10.22111/ijfs.2018.3766.