A Multi-Adjoint Approach to Similarity-Based Unification
Abstract
A formal model for similarity-based fuzzy unification in multi-adjoint logic programs is presented. On this computational model, a similarity-based unification approach is constructed by simply adding axioms of fuzzy similarities and using classical crisp unification which provides a semantic framework for logic programming with different notions of similarity.
Citation
Please, cite this work as:
[MOV02] J. Medina, M. Ojeda-Aciego, and P. Vojtás. “A Multi-Adjoint Approach to Similarity-Based Unification”. In: Unification in Non-Classical Logics, UNCL 2002, ICALP 2002 Satellite Workshop, Málaga, Spain, July 12-13, 2002. Ed. by P. Eklund and M. Ojeda-Aciego. Vol. 66. Electronic Notes in Theoretical Computer Science 5. Elsevier, 2002, pp. 70-85. DOI: 10.1016/S1571-0661(04)80515-2. URL: https://doi.org/10.1016/S1571-0661(04)80515-2.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] M. H. Deedar and S. Munoz-Hernandez. “UFleSe: User-Friendly Parametric Framework for Expressive Flexible Searches”. In: Canadian Journal of Electrical and Computer Engineering 43.4 (2020), p. 235–250. ISSN: 0840-8688. DOI: 10.1109/cjece.2020.2966733. URL: http://dx.doi.org/10.1109/cjece.2020.2966733.
[2] M. H. Deedar and S. Muñoz-Hernández. “Allowing Users to Create Similarity Relations for Their Flexible Searches over Databases”. In: Artificial Intelligence and Soft Computing. Springer International Publishing, 2019, p. 526–541. ISBN: 9783030209155. DOI: 10.1007/978-3-030-20915-5_47. URL: http://dx.doi.org/10.1007/978-3-030-20915-5_47.
[3] M. H. Deedar and S. Muñoz-Hernández. “Personalizing Fuzzy Search Criteria for Improving User-Based Flexible Search”. In: Human Interaction, Emerging Technologies and Future Applications IV. Springer International Publishing, 2021, p. 186–199. ISBN: 9783030740092. DOI: 10.1007/978-3-030-74009-2_24. URL: http://dx.doi.org/10.1007/978-3-030-74009-2_24.
[4] S. Krajči, R. Lencses, J. Medina, et al. “A Similarity-Based Unification Model for Flexible Querying”. In: Flexible Query Answering Systems. Springer Berlin Heidelberg, 2002, p. 263–273. ISBN: 9783540361091. DOI: 10.1007/3-540-36109-x_21. URL: http://dx.doi.org/10.1007/3-540-36109-x_21.
[5] S. Munoz-Hernandez, V. Pablos-Ceruelo, and H. Strass. “RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog”. In: Information Sciences 181.10 (May. 2011), p. 1951–1970. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.033. URL: http://dx.doi.org/10.1016/j.ins.2010.07.033.
[6] V. Pablos-Ceruelo and S. Munoz-Hernandez. “A Framework for Modelling Real-World Knowledge Capable of Obtaining Answers to Fuzzy and Flexible Searches”. In: Computational Intelligence. Springer International Publishing, Nov. 2015, p. 281–297. ISBN: 9783319233925. DOI: 10.1007/978-3-319-23392-5_16. URL: http://dx.doi.org/10.1007/978-3-319-23392-5_16.
[7] V. Pablos-Ceruelo and S. Munoz-Hernandez. “FleSe: A Tool for Posing Flexible and Expressive (Fuzzy) Queries to a Regular Database”. In: Distributed Computing and Artificial Intelligence, 11th International Conference. Springer International Publishing, 2014, p. 157–164. ISBN: 9783319075938. DOI: 10.1007/978-3-319-07593-8_20. URL: http://dx.doi.org/10.1007/978-3-319-07593-8_20.
[8] V. Pablos-Ceruelo and S. Munoz-Hernandez. “On modelling real-world knowledge to get answers to fuzzy and flexible searches without human intervention”. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2014, p. 2329–2336. DOI: 10.1109/fuzz-ieee.2014.6891723. URL: http://dx.doi.org/10.1109/fuzz-ieee.2014.6891723.
[9] V. Pablos-Ceruelo and S. Muñoz-Hernández. “Introducing Similarity Relations in a Framework for Modelling Real-World Fuzzy Knowledge”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2014, p. 51–60. ISBN: 9783319088525. DOI: 10.1007/978-3-319-08852-5_6. URL: http://dx.doi.org/10.1007/978-3-319-08852-5_6.
