A Completeness Theorem for Multi-Adjoint Logic Programming
Abstract
Multi-adjoint logic programs generalise monotonic and residuated logic programs in that simultaneous use of several implications in the rules and rather general connectives in the bodies are allowed. As our approach has continuous fixpoint semantics, in this work, a procedural semantics is given for the paradigm of multi-adjoint logic programming and a completeness result is proved. Some applications which could benefit from this theoretical approach, such as threshold computation, fuzzy databases and general fuzzy resolution, are commented on.
Citation
Please, cite this work as:
[MOV01] J. Medina, M. Ojeda-Aciego, and P. Vojtás. “A Completeness Theorem for Multi-Adjoint Logic Programming”. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, December 2-5, 2001. IEEE, 2001, pp. 1031-1034. DOI: 10.1109/FUZZ.2001.1009138. URL: https://doi.org/10.1109/FUZZ.2001.1009138.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] M. H. Deedar and S. Munoz-Hernandez. “UFleSe: User-Friendly Parametric Framework for Expressive Flexible Searches”. In: Canadian Journal of Electrical and Computer Engineering 43.4 (2020), p. 235–250. ISSN: 0840-8688. DOI: 10.1109/cjece.2020.2966733. URL: http://dx.doi.org/10.1109/cjece.2020.2966733.
[2] M. H. Deedar and S. Muñoz-Hernández. “Personalizing Fuzzy Search Criteria for Improving User-Based Flexible Search”. In: Human Interaction, Emerging Technologies and Future Applications IV. Springer International Publishing, 2021, p. 186–199. ISBN: 9783030740092. DOI: 10.1007/978-3-030-74009-2_24. URL: http://dx.doi.org/10.1007/978-3-030-74009-2_24.
[3] S. Guadarrama, S. Muñoz, and C. Vaucheret. “Fuzzy Prolog: a new approach using soft constraints propagation”. In: Fuzzy Sets and Systems 144.1 (May. 2004), p. 127–150. ISSN: 0165-0114. DOI: 10.1016/j.fss.2003.10.017. URL: http://dx.doi.org/10.1016/j.fss.2003.10.017.
[4] D. Guller. “Model and Fixpoint Semantics for Fuzzy Disjunctive Programs with Weak Similarity”. In: Innovations in Intelligent Systems. Springer Berlin Heidelberg, 2004, p. 151–202. ISBN: 9783540396154. DOI: 10.1007/978-3-540-39615-4_7. URL: http://dx.doi.org/10.1007/978-3-540-39615-4_7.
[5] N. Madrid and M. Ojeda-Aciego. “Multi-adjoint lattices from adjoint triples with involutive negation”. In: Fuzzy Sets and Systems 405 (Feb. 2021), p. 88–105. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.12.004. URL: http://dx.doi.org/10.1016/j.fss.2019.12.004.
[6] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. “A Procedural Semantics for Multi-adjoint Logic Programming”. In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 2001, p. 290–297. ISBN: 9783540453291. DOI: 10.1007/3-540-45329-6_29. URL: http://dx.doi.org/10.1007/3-540-45329-6_29.
[7] S. Munoz-Hernandez, V. P. Ceruelo, and H. Strass. “RFuzzy: An Expressive Simple Fuzzy Compiler”. In: Bio-Inspired Systems: Computational and Ambient Intelligence. Springer Berlin Heidelberg, 2009, p. 270–277. ISBN: 9783642024788. DOI: 10.1007/978-3-642-02478-8_34. URL: http://dx.doi.org/10.1007/978-3-642-02478-8_34.
[8] S. Munoz-Hernandez, V. Pablos-Ceruelo, and H. Strass. “RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog”. In: Information Sciences 181.10 (May. 2011), p. 1951–1970. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.033. URL: http://dx.doi.org/10.1016/j.ins.2010.07.033.
[9] V. Pablos-Ceruelo and S. Munoz-Hernandez. “A Framework for Modelling Real-World Knowledge Capable of Obtaining Answers to Fuzzy and Flexible Searches”. In: Computational Intelligence. Springer International Publishing, Nov. 2015, p. 281–297. ISBN: 9783319233925. DOI: 10.1007/978-3-319-23392-5_16. URL: http://dx.doi.org/10.1007/978-3-319-23392-5_16.
[10] V. Pablos-Ceruelo and S. Munoz-Hernandez. “FleSe: A Tool for Posing Flexible and Expressive (Fuzzy) Queries to a Regular Database”. In: Distributed Computing and Artificial Intelligence, 11th International Conference. Springer International Publishing, 2014, p. 157–164. ISBN: 9783319075938. DOI: 10.1007/978-3-319-07593-8_20. URL: http://dx.doi.org/10.1007/978-3-319-07593-8_20.
[11] V. Pablos-Ceruelo and S. Munoz-Hernandez. “On modelling real-world knowledge to get answers to fuzzy and flexible searches without human intervention”. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, Jul. 2014, p. 2329–2336. DOI: 10.1109/fuzz-ieee.2014.6891723. URL: http://dx.doi.org/10.1109/fuzz-ieee.2014.6891723.
[12] V. Pablos-Ceruelo and S. Muñoz-Hernández. “Introducing Similarity Relations in a Framework for Modelling Real-World Fuzzy Knowledge”. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer International Publishing, 2014, p. 51–60. ISBN: 9783319088525. DOI: 10.1007/978-3-319-08852-5_6. URL: http://dx.doi.org/10.1007/978-3-319-08852-5_6.
