Advances in Artificial Intelligence - 20th Conference of the Spanish Association for Artificial Intelligence, {CAEPIA} 2024, {A} Coru{~{n}}a, Spain, June 19-21, 2024, Proceedings
Abstract
Citation
Please, cite this work as:
[Alo+24] A. Alonso-Betanzos, B. Guijarro-Berdi~nas, V. Bolón-Canedo, et al., ed. Advances in Artificial Intelligence - 20th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2024, A Coru~na, Spain, June 19-21, 2024, Proceedings. Vol. 14640. Lecture Notes in Computer Science. Springer, 2024. ISBN: 978-3-031-62798-9. DOI: 10.1007/978-3-031-62799-6. URL: https://doi.org/10.1007/978-3-031-62799-6.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] G. Airenti, B. G. Bara, and M. Colombetti. “Conversation and Behavior Games in the Pragmatics of Dialogue”. In: Cognitive Science 17.2 (Apr. 1993), p. 197–256. ISSN: 1551-6709. DOI: 10.1207/s15516709cog1702_2. URL: http://dx.doi.org/10.1207/s15516709cog1702_2.
[2] H. Almerekhi, H. Kwak, J. Salminen, et al. “Are These Comments Triggering? Predicting Triggers of Toxicity in Online Discussions”. In: Proceedings of The Web Conference 2020. WWW ’20. ACM, Apr. 2020, p. 3033–3040. DOI: 10.1145/3366423.3380074. URL: http://dx.doi.org/10.1145/3366423.3380074.
[3] R. F. T. Ceskoutsé, A. B. Bomgni, D. R. G. Zanfack, et al. “HeteroKGRep: Heterogeneous Knowledge Graph based Drug Repositioning”. In: Knowledge-Based Systems 305 (Dec. 2024), p. 112638. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2024.112638. URL: http://dx.doi.org/10.1016/j.knosys.2024.112638.
[4] T. R. Gatla. “A CUTTING-EDGE RESEARCH ON AI COMBATING CLIMATE CHANGE: INNOVATIONS AND ITS IMPACTS”. In: International Journal of Innovations in Engineering Research and Technology 6.9 (Sep. 2019), p. 1–8. ISSN: 2394-3696. DOI: 10.26662/ijiert.v11i3.pp1-8. URL: http://dx.doi.org/10.26662/ijiert.v11i3.pp1-8.
[5] C. W. Holsapple and V. S. Raj. “An exploratory study of two KA methods”. In: Expert Systems 11.2 (May. 1994), p. 77–87. ISSN: 1468-0394. DOI: 10.1111/j.1468-0394.1994.tb00001.x. URL: http://dx.doi.org/10.1111/j.1468-0394.1994.tb00001.x.
[6] M. J. Jiménez-Navarro, M. Lovrić, S. Kecorius, et al. “Explainable deep learning on multi-target time series forecasting: An air pollution use case”. In: Results in Engineering 24 (Dec. 2024), p. 103290. ISSN: 2590-1230. DOI: 10.1016/j.rineng.2024.103290. URL: http://dx.doi.org/10.1016/j.rineng.2024.103290.
[7] P. N. Johnson-Laird and R. M. J. Byrne. “Précis ofDeduction”. In: Behavioral and Brain Sciences 16.2 (Jun. 1993), p. 323–333. ISSN: 1469-1825. DOI: 10.1017/s0140525x00030260. URL: http://dx.doi.org/10.1017/s0140525x00030260.
[8] Á. Kovács, K. Gémes, E. Iklódi, et al. “POTATO: exPlainable infOrmation exTrAcTion framewOrk”. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. CIKM ’22. ACM, Oct. 2022, p. 4897–4901. DOI: 10.1145/3511808.3557196. URL: http://dx.doi.org/10.1145/3511808.3557196.
[9] R. Li, Z. Wang, Y. Du, et al. “Maintenance Decision Generator for Electrical Equipment Based on Reinforcement Learning”. In: 2021 4th International Conference on Signal Processing and Machine Learning. SPML 2021. ACM, Aug. 2021, p. 160–165. DOI: 10.1145/3483207.3483233. URL: http://dx.doi.org/10.1145/3483207.3483233.
[10] A. Maity and G. Saha. “Enhancing cross-domain robustness in phonocardiogram signal classification using domain-invariant preprocessing and transfer learning”. In: Computer Methods and Programs in Biomedicine 257 (Dec. 2024), p. 108462. ISSN: 0169-2607. DOI: 10.1016/j.cmpb.2024.108462. URL: http://dx.doi.org/10.1016/j.cmpb.2024.108462.
[11] D. W. Murray and D. M. Pickup. “Recursive Updating of Planar Motion”. In: BMVC91. Springer London, 1991, p. 169–177. ISBN: 9781447119210. DOI: 10.1007/978-1-4471-1921-0_22. URL: http://dx.doi.org/10.1007/978-1-4471-1921-0_22.
[12] Y. Pan, J. Jiang, K. Jiang, et al. “Disentangled-Multimodal Privileged Knowledge Distillation for Depression Recognition with Incomplete Multimodal Data”. In: Proceedings of the 32nd ACM International Conference on Multimedia. MM ’24. ACM, Oct. 2024, p. 5712–5721. DOI: 10.1145/3664647.3681227. URL: http://dx.doi.org/10.1145/3664647.3681227.
[13] S. Repp and E. G. Haffner. “Dynamic Segmentation for Efficient Retrieval of Podcasts: The Repping Algorithm”. In: Proceedings of the 2024 International Conference on Multimedia Retrieval. ICMR ’24. ACM, May. 2024, p. 29–36. DOI: 10.1145/3652583.3658047. URL: http://dx.doi.org/10.1145/3652583.3658047.
[14] L. Zeng and H. H. Zhang. “Robust brain MRI image classification with SIBOW-SVM”. In: Computerized Medical Imaging and Graphics 118 (Dec. 2024), p. 102451. ISSN: 0895-6111. DOI: 10.1016/j.compmedimag.2024.102451. URL: http://dx.doi.org/10.1016/j.compmedimag.2024.102451.