Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations - 17th International Conference, {IPMU} 2018, C{'{a}}diz, Spain, June 11-15, 2018, Proceedings, Part {I}

Published

1 January 2018

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[Med+18] J. Medina, M. Ojeda-Aciego, J. L. V. Galdeano, et al., ed. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations - 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part I. Vol. 853. Communications in Computer and Information Science. Springer, 2018. ISBN: 978-3-319-91472-5. DOI: 10.1007/978-3-319-91473-2. URL: https://doi.org/10.1007/978-3-319-91473-2.

@Proceedings{Medina2018,
     title = {Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations - 17th International Conference, {IPMU} 2018, C{'{a}}diz, Spain, June 11-15, 2018, Proceedings, Part {I}},
     year = {2018},
     editor = {Jes{’u}s Medina and Manuel Ojeda-Aciego and Jos{’e} Luis Verdegay Galdeano and David A. Pelta and Inma P. Cabrera and Bernadette Bouchon-Meunier and Ronald R. Yager},
     isbn = {978-3-319-91472-5},
     publisher = {Springer},
     series = {Communications in Computer and Information Science},
     volume = {853},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/ipmu/2018-1.bib},
     doi = {10.1007/978-3-319-91473-2},
     timestamp = {Thu, 07 Jan 2021 00:00:00 +0100},
     url = {https://doi.org/10.1007/978-3-319-91473-2},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 26
  • Mendeley - Readers: 23
  • Mendeley - Readers: 7
  • Mendeley - Readers: 4
  • Mendeley - Readers: ...
  • Mentions
  • Wikipedia - References: 2

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20242023202220212020201920180123
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] H. Andersen, A. Lensen, W. Browne, et al. “Producing Diverse Rashomon Sets of Counterfactual Explanations with Niching Particle Swarm Optimization Algorithms”. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’23. ACM, Jul. 2023. DOI: 10.1145/3583131.3590444. URL: http://dx.doi.org/10.1145/3583131.3590444.

[2] R. G. Aragón, J. Medina, and E. Ramírez-Poussa. “Reducing concept lattices by means of a weaker notion of congruence”. In: Fuzzy Sets and Systems 418 (Aug. 2021), p. 153–169. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.09.013. URL: http://dx.doi.org/10.1016/j.fss.2020.09.013.

[3] G. D. Çaylı. “Some results about nullnorms on bounded lattices”. In: Fuzzy Sets and Systems 386 (May. 2020), p. 105–131. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.03.010. URL: http://dx.doi.org/10.1016/j.fss.2019.03.010.

[4] G. Coletti, D. Petturiti, and B. Vantaggi. “Models for pessimistic or optimistic decisions under different uncertain scenarios”. In: International Journal of Approximate Reasoning 105 (Feb. 2019), p. 305–326. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.12.005. URL: http://dx.doi.org/10.1016/j.ijar.2018.12.005.

[5] J. C. Davis and H. Pernicka. “Spacecraft Identification Leveraging Unsupervised Learning Techniques for Formation and Swarm Missions”. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Jan. 2020. DOI: 10.2514/6.2020-1195. URL: http://dx.doi.org/10.2514/6.2020-1195.

[6] S. De Vos, J. De Smedt, M. Verbruggen, et al. “Data-driven internal mobility: Similarity regularization gets the job done”. In: Knowledge-Based Systems 295 (Jul. 2024), p. 111824. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2024.111824. URL: http://dx.doi.org/10.1016/j.knosys.2024.111824.

[7] G. P. Dimuro, B. Bedregal, J. Fernandez, et al. “The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions”. In: International Journal of Approximate Reasoning 105 (Feb. 2019), p. 27–48. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.11.006. URL: http://dx.doi.org/10.1016/j.ijar.2018.11.006.

[8] H. Gan, Z. Yang, R. Zhou, et al. “Safe semi-supervised clustering based on Dempster–Shafer evidence theory”. In: Engineering Applications of Artificial Intelligence 123 (Aug. 2023), p. 106334. ISSN: 0952-1976. DOI: 10.1016/j.engappai.2023.106334. URL: http://dx.doi.org/10.1016/j.engappai.2023.106334.

[9] T. Kolajo, O. Daramola, and A. Adebiyi. Streaming Data and Data Streams. May. 2021. DOI: 10.1002/9781118445112.stat08310. URL: http://dx.doi.org/10.1002/9781118445112.stat08310.

[10] J. Koo, D. Klabjan, and J. Utke. “An inverse classification framework with limited budget and maximum number of perturbed samples”. In: Expert Systems with Applications 212 (Feb. 2023), p. 118761. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2022.118761. URL: http://dx.doi.org/10.1016/j.eswa.2022.118761.

[11] K. Miś, M. Baczyński, and P. Helbin. “On functional equations and inequalities related to some reasoning schemes that involve fuzzy implications”. In: Fuzzy Sets and Systems 441 (Aug. 2022), p. 33–57. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.08.014. URL: http://dx.doi.org/10.1016/j.fss.2021.08.014.

[12] I. Montes, E. Miranda, and P. Vicig. “2-Monotone outer approximations of coherent lower probabilities”. In: International Journal of Approximate Reasoning 101 (Oct. 2018), p. 181–205. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.07.004. URL: http://dx.doi.org/10.1016/j.ijar.2018.07.004.

[13] D. Petturiti and B. Vantaggi. “Conditional submodular Choquet expected values and conditional coherent risk measures”. In: International Journal of Approximate Reasoning 113 (Oct. 2019), p. 14–38. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.06.004. URL: http://dx.doi.org/10.1016/j.ijar.2019.06.004.

[14] J. Qiao. “On binary relations induced from overlap and grouping functions”. In: International Journal of Approximate Reasoning 106 (Mar. 2019), p. 155–171. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.01.006. URL: http://dx.doi.org/10.1016/j.ijar.2019.01.006.