Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations - 17th International Conference, {IPMU} 2018, C{'{a}}diz, Spain, June 11-15, 2018, Proceedings, Part {I}
Abstract
Citation
Please, cite this work as:
[Med+18] J. Medina, M. Ojeda-Aciego, J. L. V. Galdeano, et al., ed. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations - 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part I. Vol. 853. Communications in Computer and Information Science. Springer, 2018. ISBN: 978-3-319-91472-5. DOI: 10.1007/978-3-319-91473-2. URL: https://doi.org/10.1007/978-3-319-91473-2.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] H. Andersen, A. Lensen, W. Browne, et al. “Producing Diverse Rashomon Sets of Counterfactual Explanations with Niching Particle Swarm Optimization Algorithms”. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’23. ACM, Jul. 2023. DOI: 10.1145/3583131.3590444. URL: http://dx.doi.org/10.1145/3583131.3590444.
[2] R. G. Aragón, J. Medina, and E. Ramírez-Poussa. “Reducing concept lattices by means of a weaker notion of congruence”. In: Fuzzy Sets and Systems 418 (Aug. 2021), p. 153–169. ISSN: 0165-0114. DOI: 10.1016/j.fss.2020.09.013. URL: http://dx.doi.org/10.1016/j.fss.2020.09.013.
[3] G. D. Çaylı. “Some results about nullnorms on bounded lattices”. In: Fuzzy Sets and Systems 386 (May. 2020), p. 105–131. ISSN: 0165-0114. DOI: 10.1016/j.fss.2019.03.010. URL: http://dx.doi.org/10.1016/j.fss.2019.03.010.
[4] G. Coletti, D. Petturiti, and B. Vantaggi. “Models for pessimistic or optimistic decisions under different uncertain scenarios”. In: International Journal of Approximate Reasoning 105 (Feb. 2019), p. 305–326. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.12.005. URL: http://dx.doi.org/10.1016/j.ijar.2018.12.005.
[5] J. C. Davis and H. Pernicka. “Spacecraft Identification Leveraging Unsupervised Learning Techniques for Formation and Swarm Missions”. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics, Jan. 2020. DOI: 10.2514/6.2020-1195. URL: http://dx.doi.org/10.2514/6.2020-1195.
[6] S. De Vos, J. De Smedt, M. Verbruggen, et al. “Data-driven internal mobility: Similarity regularization gets the job done”. In: Knowledge-Based Systems 295 (Jul. 2024), p. 111824. ISSN: 0950-7051. DOI: 10.1016/j.knosys.2024.111824. URL: http://dx.doi.org/10.1016/j.knosys.2024.111824.
[7] G. P. Dimuro, B. Bedregal, J. Fernandez, et al. “The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions”. In: International Journal of Approximate Reasoning 105 (Feb. 2019), p. 27–48. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.11.006. URL: http://dx.doi.org/10.1016/j.ijar.2018.11.006.
[8] H. Gan, Z. Yang, R. Zhou, et al. “Safe semi-supervised clustering based on Dempster–Shafer evidence theory”. In: Engineering Applications of Artificial Intelligence 123 (Aug. 2023), p. 106334. ISSN: 0952-1976. DOI: 10.1016/j.engappai.2023.106334. URL: http://dx.doi.org/10.1016/j.engappai.2023.106334.
[9] T. Kolajo, O. Daramola, and A. Adebiyi. Streaming Data and Data Streams. May. 2021. DOI: 10.1002/9781118445112.stat08310. URL: http://dx.doi.org/10.1002/9781118445112.stat08310.
[10] J. Koo, D. Klabjan, and J. Utke. “An inverse classification framework with limited budget and maximum number of perturbed samples”. In: Expert Systems with Applications 212 (Feb. 2023), p. 118761. ISSN: 0957-4174. DOI: 10.1016/j.eswa.2022.118761. URL: http://dx.doi.org/10.1016/j.eswa.2022.118761.
[11] K. Miś, M. Baczyński, and P. Helbin. “On functional equations and inequalities related to some reasoning schemes that involve fuzzy implications”. In: Fuzzy Sets and Systems 441 (Aug. 2022), p. 33–57. ISSN: 0165-0114. DOI: 10.1016/j.fss.2021.08.014. URL: http://dx.doi.org/10.1016/j.fss.2021.08.014.
[12] I. Montes, E. Miranda, and P. Vicig. “2-Monotone outer approximations of coherent lower probabilities”. In: International Journal of Approximate Reasoning 101 (Oct. 2018), p. 181–205. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2018.07.004. URL: http://dx.doi.org/10.1016/j.ijar.2018.07.004.
[13] D. Petturiti and B. Vantaggi. “Conditional submodular Choquet expected values and conditional coherent risk measures”. In: International Journal of Approximate Reasoning 113 (Oct. 2019), p. 14–38. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.06.004. URL: http://dx.doi.org/10.1016/j.ijar.2019.06.004.
[14] J. Qiao. “On binary relations induced from overlap and grouping functions”. In: International Journal of Approximate Reasoning 106 (Mar. 2019), p. 155–171. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2019.01.006. URL: http://dx.doi.org/10.1016/j.ijar.2019.01.006.
