Generalizations of lattices via non-deterministic operators
Abstract
Citation
Please, cite this work as:
[Mar+05] J. Mart', G. Gutiérrez, I. P. de Guzmán, et al. “Generalizations of lattices via non-deterministic operators”. In: Discret. Math. 295.1-3 (2005), pp. 107-141. DOI: 10.1016/J.DISC.2004.08.043. URL: https://doi.org/10.1016/j.disc.2004.08.043.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] A. Belfodil, S. O. Kuznetsov, and M. Kaytoue. “On pattern setups and pattern multistructures”. In: International Journal of General Systems 49.8 (Sep. 2020), p. 785–818. ISSN: 1563-5104. DOI: 10.1080/03081079.2020.1806832. URL: http://dx.doi.org/10.1080/03081079.2020.1806832.
[2] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Congruence relations on some hyperstructures”. In: Annals of Mathematics and Artificial Intelligence 56.3–4 (Jul. 2009), p. 361–370. ISSN: 1573-7470. DOI: 10.1007/s10472-009-9146-5. URL: http://dx.doi.org/10.1007/s10472-009-9146-5.
[3] I. P. Cabrera, P. Cordero, G. Gutiérrez, et al. “Fuzzy congruence relations on nd-groupoids”. In: International Journal of Computer Mathematics 86.10–11 (Nov. 2009), p. 1684–1695. ISSN: 1029-0265. DOI: 10.1080/00207160902721797. URL: http://dx.doi.org/10.1080/00207160902721797.
[4] I. P. Cabrera, P. Cordero, and M. Ojeda-Aciego. “Non-deterministic Algebraic Structures for Soft Computing”. In: Advances in Computational Intelligence. Springer Berlin Heidelberg, 2011, p. 437–444. ISBN: 9783642214981. DOI: 10.1007/978-3-642-21498-1_55. URL: http://dx.doi.org/10.1007/978-3-642-21498-1_55.
[5] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “A coalgebraic approach to non-determinism: Applications to multilattices”. In: Information Sciences 180.22 (Nov. 2010), p. 4323–4335. ISSN: 0020-0255. DOI: 10.1016/j.ins.2010.07.002. URL: http://dx.doi.org/10.1016/j.ins.2010.07.002.
[6] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “Finitary coalgebraic multisemilattices and multilattices”. In: Applied Mathematics and Computation 219.1 (Sep. 2012), p. 31–44. ISSN: 0096-3003. DOI: 10.1016/j.amc.2011.10.081. URL: http://dx.doi.org/10.1016/j.amc.2011.10.081.
[7] I. Cabrera, P. Cordero, G. Gutiérrez, et al. “On residuation in multilattices: Filters, congruences, and homomorphisms”. In: Fuzzy Sets and Systems 234 (Jan. 2014), p. 1–21. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.04.002. URL: http://dx.doi.org/10.1016/j.fss.2013.04.002.
[8] P. Cordero, A. Mora, I. de Guzmán, et al. “Non-deterministic ideal operators: An adequate tool for formalization in Data Bases”. In: Discrete Applied Mathematics 156.6 (Mar. 2008), p. 911–923. ISSN: 0166-218X. DOI: 10.1016/j.dam.2007.02.014. URL: http://dx.doi.org/10.1016/j.dam.2007.02.014.
[9] L. É. Diékouam Fotso, C. P. Kengne, and D. C. Awouafack. “Fuzzy prime filter theorem in multilattices”. In: Fuzzy Sets and Systems 497 (Dec. 2024), p. 109148. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109148. URL: http://dx.doi.org/10.1016/j.fss.2024.109148.
[10] L. N. Maffeu, C. Lele, J. B. Nganou, et al. “Multiplicative and implicative derivations on residuated multilattices”. In: Soft Computing 23.23 (Jun. 2019), p. 12199–12208. ISSN: 1433-7479. DOI: 10.1007/s00500-019-04184-z. URL: http://dx.doi.org/10.1007/s00500-019-04184-z.
[11] J. Medina-Moreno, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Concept-Forming Operators on Multilattices”. In: Formal Concept Analysis. Springer Berlin Heidelberg, 2013, p. 203–215. ISBN: 9783642383175. DOI: 10.1007/978-3-642-38317-5_13. URL: http://dx.doi.org/10.1007/978-3-642-38317-5_13.
[12] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Fuzzy logic programming via multilattices”. In: Fuzzy Sets and Systems 158.6 (Mar. 2007), p. 674–688. ISSN: 0165-0114. DOI: 10.1016/j.fss.2006.11.006. URL: http://dx.doi.org/10.1016/j.fss.2006.11.006.
[13] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Multi-lattices as a Basis for Generalized Fuzzy Logic Programming”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2006, p. 61–70. ISBN: 9783540325307. DOI: 10.1007/11676935_8. URL: http://dx.doi.org/10.1007/11676935_8.
[14] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Multilattice as the set of truth values for fuzzy rough sets”. In: Journal of Applied Non-Classical Logics (Jul. 2024), p. 1–20. ISSN: 1958-5780. DOI: 10.1080/11663081.2024.2373016. URL: http://dx.doi.org/10.1080/11663081.2024.2373016.
[15] G. Nguepy Dongmo, B. B. Koguep Njionou, L. Kwuida, et al. “Rough Fuzzy Concept Analysis via Multilattice”. In: Rough Sets. Springer Nature Switzerland, 2023, p. 495–508. ISBN: 9783031509599. DOI: 10.1007/978-3-031-50959-9_34. URL: http://dx.doi.org/10.1007/978-3-031-50959-9_34.
[16] U. Straccia, M. Ojeda-Aciego, and C. V. Damásio. “On Fixed-Points of Multivalued Functions on Complete Lattices and Their Application to Generalized Logic Programs”. In: SIAM Journal on Computing 38.5 (Jan. 2009), p. 1881–1911. ISSN: 1095-7111. DOI: 10.1137/070695976. URL: http://dx.doi.org/10.1137/070695976.
[17] L. Zedam and B. De Baets. “Weaker forms of increasingness of binary operations and their role in the characterization of meet and join operations”. In: Fuzzy Sets and Systems 497 (Dec. 2024), p. 109116. ISSN: 0165-0114. DOI: 10.1016/j.fss.2024.109116. URL: http://dx.doi.org/10.1016/j.fss.2024.109116.
