Reductions for non-clausal theorem proving
Abstract
Citation
Please, cite this work as:
[Agu+01] G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, et al. “Reductions for non-clausal theorem proving”. In: Theor. Comput. Sci. 266.1-2 (2001), pp. 81-112. DOI: 10.1016/S0304-3975(00)00044-X. URL: https://doi.org/10.1016/S0304-3975(00)00044-X.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] G. Aguilera-Venegas, J. L. Galán-García, M. á. Galán-García, et al. “Teaching Semantic Tableaux Method for Propositional Classical Logic with a CAS”. In: International Journal for Technology in Mathematics Education 22.2 (Jun. 2015), p. 85–91. ISSN: 1744-2710. DOI: 10.1564/tme_v22.2.07. URL: http://dx.doi.org/10.1564/tme_v22.2.07.
[2] G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, et al. “Reducing signed propositional formulas”. In: Soft Computing - A Fusion of Foundations, Methodologies and Applications 2.4 (Feb. 1999), p. 157–166. ISSN: 1433-7479. DOI: 10.1007/s005000050048. URL: http://dx.doi.org/10.1007/s005000050048.
[3] P. Cordero, M. Enciso, and I. de Guzmán. “Bases for closed sets of implicants and implicates in temporal logic”. In: Acta Informatica 38.9 (Aug. 2002), p. 599–619. ISSN: 1432-0525. DOI: 10.1007/s00236-002-0087-2. URL: http://dx.doi.org/10.1007/s00236-002-0087-2.
[4] P. Cordero, G. Gutiérrez, J. Martínez, et al. “A New Algebraic Tool for Automatic Theorem Provers”. In: Annals of Mathematics and Artificial Intelligence 42.4 (Dec. 2004), p. 369–398. ISSN: 1012-2443. DOI: 10.1023/b:amai.0000038312.77514.3c. URL: http://dx.doi.org/10.1023/b:amai.0000038312.77514.3c.
[5] M. Ferrari, C. Fiorentini, and G. Fiorino. “Simplification Rules for Intuitionistic Propositional Tableaux”. In: ACM Transactions on Computational Logic 13.2 (Apr. 2012), p. 1–23. ISSN: 1557-945X. DOI: 10.1145/2159531.2159536. URL: http://dx.doi.org/10.1145/2159531.2159536.
[6] G. Gutiérrez, I. P. de Guzmán, J. Martínez, et al. “Reduction Theorems for Boolean Formulas Using Δ-Trees”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2000, p. 179–192. ISBN: 9783540400066. DOI: 10.1007/3-540-40006-0_13. URL: http://dx.doi.org/10.1007/3-540-40006-0_13.
[7] I. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees in Multiple-Valued Logics”. In: Artificial Intelligence: Methodology, Systems, and Applications. Springer Berlin Heidelberg, 2002, p. 223–232. ISBN: 9783540461487. DOI: 10.1007/3-540-46148-5_23. URL: http://dx.doi.org/10.1007/3-540-46148-5_23.
[8] I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. “Restricted Δ-Trees and Reduction Theorems in Multiple-Valued Logics”. In: Advances in Artificial Intelligence — IBERAMIA 2002. Springer Berlin Heidelberg, 2002, p. 161–171. ISBN: 9783540361312. DOI: 10.1007/3-540-36131-6_17. URL: http://dx.doi.org/10.1007/3-540-36131-6_17.
[9] X. He, Y. Xu, J. Liu, et al. “α-Generalized lock resolution method in linguistic truth-valued lattice-valued logic”. In: International Journal of Computational Intelligence Systems 5.6 (2012), p. 1120. ISSN: 1875-6883. DOI: 10.1080/18756891.2012.747665. URL: http://dx.doi.org/10.1080/18756891.2012.747665.
[10] G. E. Imaz. “A first polynomial non-clausal class in many-valued logic”. In: Fuzzy Sets and Systems 456 (Mar. 2023), p. 1–37. ISSN: 0165-0114. DOI: 10.1016/j.fss.2022.10.008. URL: http://dx.doi.org/10.1016/j.fss.2022.10.008.
[11] J. Ma, W. Li, D. Ruan, et al. “Filter-based resolution principle for lattice-valued propositional logic LP(X)”. In: Information Sciences 177.4 (Feb. 2007), p. 1046–1062. ISSN: 0020-0255. DOI: 10.1016/j.ins.2006.07.027. URL: http://dx.doi.org/10.1016/j.ins.2006.07.027.
[12] F. J. Martín-Mateos, J. A. Alonso, M. J. Hidalgo, et al. “Verification in ACL2 of a Generic Framework to Synthesize SAT-Provers”. In: Logic Based Program Synthesis and Transformation. Springer Berlin Heidelberg, 2003, p. 182–198. ISBN: 9783540450139. DOI: 10.1007/3-540-45013-0_15. URL: http://dx.doi.org/10.1007/3-540-45013-0_15.
[13] J. Martínez, G. Gutiérrez, I. de Guzmán, et al. “Generalizations of lattices via non-deterministic operators”. In: Discrete Mathematics 295.1–3 (May. 2005), p. 107–141. ISSN: 0012-365X. DOI: 10.1016/j.disc.2004.08.043. URL: http://dx.doi.org/10.1016/j.disc.2004.08.043.
[14] M. Ojeda-Aciego and A. Valverde. “tascpl: TAS Solver for Classical Propositional Logic”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2004, p. 738–741. ISBN: 9783540302278. DOI: 10.1007/978-3-540-30227-8_70. URL: http://dx.doi.org/10.1007/978-3-540-30227-8_70.
[15] D. Pearce, I. P. de Guzmán, and A. Valverde. “Computing Equilibrium Models Using Signed Formulas”. In: Computational Logic — CL 2000. Springer Berlin Heidelberg, 2000, p. 688–702. ISBN: 9783540449577. DOI: 10.1007/3-540-44957-4_46. URL: http://dx.doi.org/10.1007/3-540-44957-4_46.
[16] Y. Xu, J. Liu, X. Zhong, et al. “Multiary α-Resolution Principle for a Lattice-Valued Logic”. In: IEEE Transactions on Fuzzy Systems 21.5 (Oct. 2013), p. 898–912. ISSN: 1941-0034. DOI: 10.1109/tfuzz.2012.2236095. URL: http://dx.doi.org/10.1109/tfuzz.2012.2236095.
[17] X. Zhong, Y. Xu, J. Liu, et al. “General form of α-resolution principle for linguistic truth-valued lattice-valued logic”. In: Soft Computing 16.10 (Jun. 2012), p. 1767–1781. ISSN: 1433-7479. DOI: 10.1007/s00500-012-0860-2. URL: http://dx.doi.org/10.1007/s00500-012-0860-2.
