Sorted Multi-adjoint Logic Programs: Termination Results and Applications
Abstract
Citation
Please, cite this work as:
[DMO04] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. “Sorted Multi-adjoint Logic Programs: Termination Results and Applications”. In: Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings. Ed. by J. J. Alferes and J. A. Leite. Vol. 3229. Lecture Notes in Computer Science. Springer, 2004, pp. 252-265. DOI: 10.1007/978-3-540-30227-8_23. URL: https://doi.org/10.1007/978-3-540-30227-8_23.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. “Sorted Multi-adjoint Logic Programs: Termination Results and Applications”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2004, p. 252–265. ISBN: 9783540302278. DOI: 10.1007/978-3-540-30227-8_23. URL: http://dx.doi.org/10.1007/978-3-540-30227-8_23.
[2] C. Damasio, J. Medina, and M. Ojeda-Aciego. “A Tabulation Proof Procedure for First-order Residuated Logic Programs: Soundness, Completeness and Optimizations”. In: 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006, p. 2004–2011. DOI: 10.1109/fuzzy.2006.1681978. URL: http://dx.doi.org/10.1109/fuzzy.2006.1681978.
[3] C. Damásio, J. Medina, and M. Ojeda-Aciego. “Termination of logic programs with imperfect information: applications and query procedure”. In: Journal of Applied Logic 5.3 (Sep. 2007), p. 435–458. ISSN: 1570-8683. DOI: 10.1016/j.jal.2006.03.004. URL: http://dx.doi.org/10.1016/j.jal.2006.03.004.
[4] M. Eugenia Cornejo, J. Medina, and E. Ramírez. “A comparative study of adjoint triples”. In: Fuzzy Sets and Systems 211 (Jan. 2013), p. 1–14. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.05.004. URL: http://dx.doi.org/10.1016/j.fss.2012.05.004.
[5] J. Janssen, S. Heymans, D. Vermeir, et al. “Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories”. In: Logic Programming. Springer Berlin Heidelberg, 2008, p. 362–376. ISBN: 9783540899822. DOI: 10.1007/978-3-540-89982-2_34. URL: http://dx.doi.org/10.1007/978-3-540-89982-2_34.
[6] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.
[7] J. Janssen, S. Schockaert, D. Vermeir, et al. “General Fuzzy Answer Set Programs”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2009, p. 352–359. ISBN: 9783642022821. DOI: 10.1007/978-3-642-02282-1_44. URL: http://dx.doi.org/10.1007/978-3-642-02282-1_44.
[8] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.
[9] P. Julián, G. Moreno, and J. Penabad. “An improved reductant calculus using fuzzy partial evaluation techniques”. In: Fuzzy Sets and Systems 160.2 (Jan. 2009), p. 162–181. ISSN: 0165-0114. DOI: 10.1016/j.fss.2008.05.006. URL: http://dx.doi.org/10.1016/j.fss.2008.05.006.
[10] T. Kuhr and V. Vychodil. “Fuzzy logic programming reduced to reasoning with attribute implications”. In: Fuzzy Sets and Systems 262 (Mar. 2015), p. 1–20. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.04.013. URL: http://dx.doi.org/10.1016/j.fss.2014.04.013.
[11] J. Medina-Moreno, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Concept-Forming Operators on Multilattices”. In: Formal Concept Analysis. Springer Berlin Heidelberg, 2013, p. 203–215. ISBN: 9783642383175. DOI: 10.1007/978-3-642-38317-5_13. URL: http://dx.doi.org/10.1007/978-3-642-38317-5_13.
[12] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Fuzzy logic programming via multilattices”. In: Fuzzy Sets and Systems 158.6 (Mar. 2007), p. 674–688. ISSN: 0165-0114. DOI: 10.1016/j.fss.2006.11.006. URL: http://dx.doi.org/10.1016/j.fss.2006.11.006.
[13] S. Schockaert, J. Janssen, and D. Vermeir. “Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains”. In: ACM Transactions on Computational Logic 13.4 (Oct. 2012), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/2362355.2362361. URL: http://dx.doi.org/10.1145/2362355.2362361.
[14] S. Schockaert, J. Janssen, D. Vermeir, et al. “Answer Sets in a Fuzzy Equilibrium Logic”. In: Web Reasoning and Rule Systems. Springer Berlin Heidelberg, 2009, p. 135–149. ISBN: 9783642050824. DOI: 10.1007/978-3-642-05082-4_10. URL: http://dx.doi.org/10.1007/978-3-642-05082-4_10.
[15] U. Straccia. “Chapter 7 Uncertainty and description logic programs over lattices”. In: Fuzzy Logic and the Semantic Web. Elsevier, 2006, p. 115–133. DOI: 10.1016/s1574-9576(06)80009-2. URL: http://dx.doi.org/10.1016/s1574-9576(06)80009-2.
[16] U. Straccia. “Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs”. In: Reasoning Web. Springer Berlin Heidelberg, 2008, p. 54–103. ISBN: 9783540856580. DOI: 10.1007/978-3-540-85658-0_2. URL: http://dx.doi.org/10.1007/978-3-540-85658-0_2.
[17] U. Straccia. “Query Answering in Normal Logic Programs Under Uncertainty”. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Springer Berlin Heidelberg, 2005, p. 687–700. ISBN: 9783540318880. DOI: 10.1007/11518655_58. URL: http://dx.doi.org/10.1007/11518655_58.
[18] U. Straccia. “Uncertainty Management in Logic Programming: Simple and Effective Top-Down Query Answering”. In: Knowledge-Based Intelligent Information and Engineering Systems. Springer Berlin Heidelberg, 2005, p. 753–760. ISBN: 9783540319863. DOI: 10.1007/11552451_103. URL: http://dx.doi.org/10.1007/11552451_103.
[19] U. Straccia and N. Madrid. “A top-k query answering procedure for fuzzy logic programming”. In: Fuzzy Sets and Systems 205 (Oct. 2012), p. 1–29. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.01.016. URL: http://dx.doi.org/10.1016/j.fss.2012.01.016.
[20] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. “An introduction to fuzzy answer set programming”. In: Annals of Mathematics and Artificial Intelligence 50.3–4 (Jul. 2007), p. 363–388. ISSN: 1573-7470. DOI: 10.1007/s10472-007-9080-3. URL: http://dx.doi.org/10.1007/s10472-007-9080-3.
[21] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. “Fuzzy Answer Set Programming”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2006, p. 359–372. ISBN: 9783540396277. DOI: 10.1007/11853886_30. URL: http://dx.doi.org/10.1007/11853886_30.
