Sorted Multi-adjoint Logic Programs: Termination Results and Applications

uncategorised
Authors

Carlos Viegas Damásio

Jesús Medina

Manuel Ojeda-Aciego

Published

1 January 2004

Publication details

Logics in Artificial Intelligence, 9th European Conference, {JELIA} 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings , Lecture Notes in Computer Science vol. 3229, pages 252–265.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[DMO04] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. “Sorted Multi-adjoint Logic Programs: Termination Results and Applications”. In: Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings. Ed. by J. J. Alferes and J. A. Leite. Vol. 3229. Lecture Notes in Computer Science. Springer, 2004, pp. 252-265. DOI: 10.1007/978-3-540-30227-8_23. URL: https://doi.org/10.1007/978-3-540-30227-8_23.

@InProceedings{Damasio2004a,
     author = {Carlos Viegas Dam{’a}sio and Jes{’u}s Medina and Manuel Ojeda-Aciego},
     booktitle = {Logics in Artificial Intelligence, 9th European Conference, {JELIA} 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings},
     title = {Sorted Multi-adjoint Logic Programs: Termination Results and Applications},
     year = {2004},
     editor = {Jos{’e} J{’u}lio Alferes and Jo~ao Alexandre Leite},
     pages = {252–265},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {3229},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/jelia/DamasioMO04.bib},
     doi = {10.1007/978-3-540-30227-8_23},
     timestamp = {Tue, 07 May 2024 20:11:09 +0200},
     url = {https://doi.org/10.1007/978-3-540-30227-8_23},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 21
  • Scopus - Citation Indexes: 30
  • Captures
  • Mendeley - Readers: 7

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

2022202020182017201420132012012345
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. “Sorted Multi-adjoint Logic Programs: Termination Results and Applications”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2004, p. 252–265. ISBN: 9783540302278. DOI: 10.1007/978-3-540-30227-8_23. URL: http://dx.doi.org/10.1007/978-3-540-30227-8_23.

[2] C. Damasio, J. Medina, and M. Ojeda-Aciego. “A Tabulation Proof Procedure for First-order Residuated Logic Programs: Soundness, Completeness and Optimizations”. In: 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006, p. 2004–2011. DOI: 10.1109/fuzzy.2006.1681978. URL: http://dx.doi.org/10.1109/fuzzy.2006.1681978.

[3] C. Damásio, J. Medina, and M. Ojeda-Aciego. “Termination of logic programs with imperfect information: applications and query procedure”. In: Journal of Applied Logic 5.3 (Sep. 2007), p. 435–458. ISSN: 1570-8683. DOI: 10.1016/j.jal.2006.03.004. URL: http://dx.doi.org/10.1016/j.jal.2006.03.004.

[4] M. Eugenia Cornejo, J. Medina, and E. Ramírez. “A comparative study of adjoint triples”. In: Fuzzy Sets and Systems 211 (Jan. 2013), p. 1–14. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.05.004. URL: http://dx.doi.org/10.1016/j.fss.2012.05.004.

[5] J. Janssen, S. Heymans, D. Vermeir, et al. “Compiling Fuzzy Answer Set Programs to Fuzzy Propositional Theories”. In: Logic Programming. Springer Berlin Heidelberg, 2008, p. 362–376. ISBN: 9783540899822. DOI: 10.1007/978-3-540-89982-2_34. URL: http://dx.doi.org/10.1007/978-3-540-89982-2_34.

[6] J. Janssen, S. Schockaert, D. Vermeir, et al. “A core language for fuzzy answer set programming”. In: International Journal of Approximate Reasoning 53.4 (Jun. 2012), p. 660–692. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2012.01.005. URL: http://dx.doi.org/10.1016/j.ijar.2012.01.005.

[7] J. Janssen, S. Schockaert, D. Vermeir, et al. “General Fuzzy Answer Set Programs”. In: Fuzzy Logic and Applications. Springer Berlin Heidelberg, 2009, p. 352–359. ISBN: 9783642022821. DOI: 10.1007/978-3-642-02282-1_44. URL: http://dx.doi.org/10.1007/978-3-642-02282-1_44.

[8] J. JANSSEN, D. VERMEIR, S. SCHOCKAERT, et al. “Reducing fuzzy answer set programming to model finding in fuzzy logics”. In: Theory and Practice of Logic Programming 12.6 (Jun. 2011), p. 811–842. ISSN: 1475-3081. DOI: 10.1017/s1471068411000093. URL: http://dx.doi.org/10.1017/s1471068411000093.

[9] P. Julián, G. Moreno, and J. Penabad. “An improved reductant calculus using fuzzy partial evaluation techniques”. In: Fuzzy Sets and Systems 160.2 (Jan. 2009), p. 162–181. ISSN: 0165-0114. DOI: 10.1016/j.fss.2008.05.006. URL: http://dx.doi.org/10.1016/j.fss.2008.05.006.

[10] T. Kuhr and V. Vychodil. “Fuzzy logic programming reduced to reasoning with attribute implications”. In: Fuzzy Sets and Systems 262 (Mar. 2015), p. 1–20. ISSN: 0165-0114. DOI: 10.1016/j.fss.2014.04.013. URL: http://dx.doi.org/10.1016/j.fss.2014.04.013.

[11] J. Medina-Moreno, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Concept-Forming Operators on Multilattices”. In: Formal Concept Analysis. Springer Berlin Heidelberg, 2013, p. 203–215. ISBN: 9783642383175. DOI: 10.1007/978-3-642-38317-5_13. URL: http://dx.doi.org/10.1007/978-3-642-38317-5_13.

[12] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “Fuzzy logic programming via multilattices”. In: Fuzzy Sets and Systems 158.6 (Mar. 2007), p. 674–688. ISSN: 0165-0114. DOI: 10.1016/j.fss.2006.11.006. URL: http://dx.doi.org/10.1016/j.fss.2006.11.006.

[13] S. Schockaert, J. Janssen, and D. Vermeir. “Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains”. In: ACM Transactions on Computational Logic 13.4 (Oct. 2012), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/2362355.2362361. URL: http://dx.doi.org/10.1145/2362355.2362361.

[14] S. Schockaert, J. Janssen, D. Vermeir, et al. “Answer Sets in a Fuzzy Equilibrium Logic”. In: Web Reasoning and Rule Systems. Springer Berlin Heidelberg, 2009, p. 135–149. ISBN: 9783642050824. DOI: 10.1007/978-3-642-05082-4_10. URL: http://dx.doi.org/10.1007/978-3-642-05082-4_10.

[15] U. Straccia. “Chapter 7 Uncertainty and description logic programs over lattices”. In: Fuzzy Logic and the Semantic Web. Elsevier, 2006, p. 115–133. DOI: 10.1016/s1574-9576(06)80009-2. URL: http://dx.doi.org/10.1016/s1574-9576(06)80009-2.

[16] U. Straccia. “Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs”. In: Reasoning Web. Springer Berlin Heidelberg, 2008, p. 54–103. ISBN: 9783540856580. DOI: 10.1007/978-3-540-85658-0_2. URL: http://dx.doi.org/10.1007/978-3-540-85658-0_2.

[17] U. Straccia. “Query Answering in Normal Logic Programs Under Uncertainty”. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Springer Berlin Heidelberg, 2005, p. 687–700. ISBN: 9783540318880. DOI: 10.1007/11518655_58. URL: http://dx.doi.org/10.1007/11518655_58.

[18] U. Straccia. “Uncertainty Management in Logic Programming: Simple and Effective Top-Down Query Answering”. In: Knowledge-Based Intelligent Information and Engineering Systems. Springer Berlin Heidelberg, 2005, p. 753–760. ISBN: 9783540319863. DOI: 10.1007/11552451_103. URL: http://dx.doi.org/10.1007/11552451_103.

[19] U. Straccia and N. Madrid. “A top-k query answering procedure for fuzzy logic programming”. In: Fuzzy Sets and Systems 205 (Oct. 2012), p. 1–29. ISSN: 0165-0114. DOI: 10.1016/j.fss.2012.01.016. URL: http://dx.doi.org/10.1016/j.fss.2012.01.016.

[20] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. “An introduction to fuzzy answer set programming”. In: Annals of Mathematics and Artificial Intelligence 50.3–4 (Jul. 2007), p. 363–388. ISSN: 1573-7470. DOI: 10.1007/s10472-007-9080-3. URL: http://dx.doi.org/10.1007/s10472-007-9080-3.

[21] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. “Fuzzy Answer Set Programming”. In: Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2006, p. 359–372. ISBN: 9783540396277. DOI: 10.1007/11853886_30. URL: http://dx.doi.org/10.1007/11853886_30.