A Multi-adjoint Logic Approach to Abductive Reasoning

Authors

Jesús Medina

Manuel Ojeda-Aciego

Peter Vojtás

Published

1 January 2001

Publication details

Logic Programming, 17th International Conference, {ICLP} 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings , Lecture Notes in Computer Science vol. 2237, pages 269–283.

Links

DOI

 

Abstract

Citation

Please, cite this work as:

[MOV01] J. Medina, M. Ojeda-Aciego, and P. Vojtás. “A Multi-adjoint Logic Approach to Abductive Reasoning”. In: Logic Programming, 17th International Conference, ICLP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings. Ed. by P. Codognet. Vol. 2237. Lecture Notes in Computer Science. Springer, 2001, pp. 269-283. DOI: 10.1007/3-540-45635-X_26. URL: https://doi.org/10.1007/3-540-45635-X_26.

@InProceedings{Medina2001c,
     author = {Jes{’u}s Medina and Manuel Ojeda-Aciego and Peter Vojt{’a}s},
     booktitle = {Logic Programming, 17th International Conference, {ICLP} 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings},
     title = {A Multi-adjoint Logic Approach to Abductive Reasoning},
     year = {2001},
     editor = {Philippe Codognet},
     pages = {269–283},
     publisher = {Springer},
     series = {Lecture Notes in Computer Science},
     volume = {2237},
     bibsource = {dblp computer science bibliography, https://dblp.org},
     biburl = {https://dblp.org/rec/conf/iclp/MedinaOV01.bib},
     doi = {10.1007/3-540-45635-X_26},
     timestamp = {Thu, 07 Jan 2021 00:00:00 +0100},
     url = {https://doi.org/10.1007/3-540-45635-X_26},
}

Bibliometric data

The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.

  • Citations
  • CrossRef - Citation Indexes: 3
  • Scopus - Citation Indexes: 8
  • Captures
  • Mendeley - Readers: 7

Cites

The following graph plots the number of cites received by this work from its publication, on a yearly basis.

20222021201820172014201320120.000.250.500.751.00
yearcites

Papers citing this work

The following is a non-exhaustive list of papers that cite this work:

[1] K. Bauters, S. Schockaert, M. De Cock, et al. “Semantics for possibilistic answer set programs: Uncertain rules versus rules with uncertain conclusions”. In: International Journal of Approximate Reasoning 55.2 (Jan. 2014), p. 739–761. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.09.006. URL: http://dx.doi.org/10.1016/j.ijar.2013.09.006.

[2] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “Multi-adjoint Lattice Logic. Properties and Query Answering”. In: Progress in Artificial Intelligence. Springer International Publishing, 2022, p. 701–712. ISBN: 9783031164743. DOI: 10.1007/978-3-031-16474-3_57. URL: http://dx.doi.org/10.1007/978-3-031-16474-3_57.

[3] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.

[4] M. E. Cornejo and J. Medina. “Right Adjoint Algebras Versus Operator Left Residuated Posets”. In: Rough Sets. Springer International Publishing, 2021, p. 180–191. ISBN: 9783030873349. DOI: 10.1007/978-3-030-87334-9_15. URL: http://dx.doi.org/10.1007/978-3-030-87334-9_15.

[5] D. Guller. “Model and Fixpoint Semantics for Fuzzy Disjunctive Programs with Weak Similarity”. In: Innovations in Intelligent Systems. Springer Berlin Heidelberg, 2004, p. 151–202. ISBN: 9783540396154. DOI: 10.1007/978-3-540-39615-4_7. URL: http://dx.doi.org/10.1007/978-3-540-39615-4_7.

[6] K. Horiuchi, B. Šešelja, and A. Tepavčević. “Trice-valued fuzzy sets: Mathematical model for three-way decisions”. In: Information Sciences 507 (Jan. 2020), p. 574–584. ISSN: 0020-0255. DOI: 10.1016/j.ins.2018.09.007. URL: http://dx.doi.org/10.1016/j.ins.2018.09.007.

[7] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “A Neural Approach to Abductive Multi-adjoint Reasoning”. In: Artificial Intelligence: Methodology, Systems, and Applications. Springer Berlin Heidelberg, 2002, p. 213–222. ISBN: 9783540461487. DOI: 10.1007/3-540-46148-5_22. URL: http://dx.doi.org/10.1007/3-540-46148-5_22.

[8] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “A neural approach to extended logic programs”. In: Computational Methods in Neural Modeling. Springer Berlin Heidelberg, 2003, p. 654–661. ISBN: 9783540448686. DOI: 10.1007/3-540-44868-3_83. URL: http://dx.doi.org/10.1007/3-540-44868-3_83.

[9] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. “A Procedural Semantics for Multi-adjoint Logic Programming”. In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 2001, p. 290–297. ISBN: 9783540453291. DOI: 10.1007/3-540-45329-6_29. URL: http://dx.doi.org/10.1007/3-540-45329-6_29.

[10] G. Moreno, J. Penabad, and C. Vázquez. “Beyond multi-adjoint logic programming”. In: International Journal of Computer Mathematics 92.9 (Nov. 2014), p. 1956–1975. ISSN: 1029-0265. DOI: 10.1080/00207160.2014.975218. URL: http://dx.doi.org/10.1080/00207160.2014.975218.

[11] J. Pazos, A. Rodríguez-Patón, and A. Silva. “Solving SAT in Linear Time with a Neural-like Membrane System”. In: Computational Methods in Neural Modeling. Springer Berlin Heidelberg, 2003, p. 662–669. ISBN: 9783540448686. DOI: 10.1007/3-540-44868-3_84. URL: http://dx.doi.org/10.1007/3-540-44868-3_84.

[12] S. Schockaert, J. Janssen, and D. Vermeir. “Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains”. In: ACM Transactions on Computational Logic 13.4 (Oct. 2012), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/2362355.2362361. URL: http://dx.doi.org/10.1145/2362355.2362361.