A Multi-adjoint Logic Approach to Abductive Reasoning
Abstract
Citation
Please, cite this work as:
[MOV01] J. Medina, M. Ojeda-Aciego, and P. Vojtás. “A Multi-adjoint Logic Approach to Abductive Reasoning”. In: Logic Programming, 17th International Conference, ICLP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings. Ed. by P. Codognet. Vol. 2237. Lecture Notes in Computer Science. Springer, 2001, pp. 269-283. DOI: 10.1007/3-540-45635-X_26. URL: https://doi.org/10.1007/3-540-45635-X_26.
Bibliometric data
The following data has been extracted from resources such as OpenAlex, Dimensions, PlumX or Altmetric.
Cites
The following graph plots the number of cites received by this work from its publication, on a yearly basis.
Papers citing this work
The following is a non-exhaustive list of papers that cite this work:
[1] K. Bauters, S. Schockaert, M. De Cock, et al. “Semantics for possibilistic answer set programs: Uncertain rules versus rules with uncertain conclusions”. In: International Journal of Approximate Reasoning 55.2 (Jan. 2014), p. 739–761. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.09.006. URL: http://dx.doi.org/10.1016/j.ijar.2013.09.006.
[2] M. E. Cornejo, L. Fariñas del Cerro, and J. Medina. “Multi-adjoint Lattice Logic. Properties and Query Answering”. In: Progress in Artificial Intelligence. Springer International Publishing, 2022, p. 701–712. ISBN: 9783031164743. DOI: 10.1007/978-3-031-16474-3_57. URL: http://dx.doi.org/10.1007/978-3-031-16474-3_57.
[3] M. E. Cornejo, D. Lobo, and J. Medina. “Syntax and semantics of multi-adjoint normal logic programming”. In: Fuzzy Sets and Systems 345 (Aug. 2018), p. 41–62. ISSN: 0165-0114. DOI: 10.1016/j.fss.2017.12.009. URL: http://dx.doi.org/10.1016/j.fss.2017.12.009.
[4] M. E. Cornejo and J. Medina. “Right Adjoint Algebras Versus Operator Left Residuated Posets”. In: Rough Sets. Springer International Publishing, 2021, p. 180–191. ISBN: 9783030873349. DOI: 10.1007/978-3-030-87334-9_15. URL: http://dx.doi.org/10.1007/978-3-030-87334-9_15.
[5] D. Guller. “Model and Fixpoint Semantics for Fuzzy Disjunctive Programs with Weak Similarity”. In: Innovations in Intelligent Systems. Springer Berlin Heidelberg, 2004, p. 151–202. ISBN: 9783540396154. DOI: 10.1007/978-3-540-39615-4_7. URL: http://dx.doi.org/10.1007/978-3-540-39615-4_7.
[6] K. Horiuchi, B. Šešelja, and A. Tepavčević. “Trice-valued fuzzy sets: Mathematical model for three-way decisions”. In: Information Sciences 507 (Jan. 2020), p. 574–584. ISSN: 0020-0255. DOI: 10.1016/j.ins.2018.09.007. URL: http://dx.doi.org/10.1016/j.ins.2018.09.007.
[7] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “A Neural Approach to Abductive Multi-adjoint Reasoning”. In: Artificial Intelligence: Methodology, Systems, and Applications. Springer Berlin Heidelberg, 2002, p. 213–222. ISBN: 9783540461487. DOI: 10.1007/3-540-46148-5_22. URL: http://dx.doi.org/10.1007/3-540-46148-5_22.
[8] J. Medina, E. Mérida-Casermeiro, and M. Ojeda-Aciego. “A neural approach to extended logic programs”. In: Computational Methods in Neural Modeling. Springer Berlin Heidelberg, 2003, p. 654–661. ISBN: 9783540448686. DOI: 10.1007/3-540-44868-3_83. URL: http://dx.doi.org/10.1007/3-540-44868-3_83.
[9] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. “A Procedural Semantics for Multi-adjoint Logic Programming”. In: Progress in Artificial Intelligence. Springer Berlin Heidelberg, 2001, p. 290–297. ISBN: 9783540453291. DOI: 10.1007/3-540-45329-6_29. URL: http://dx.doi.org/10.1007/3-540-45329-6_29.
[10] G. Moreno, J. Penabad, and C. Vázquez. “Beyond multi-adjoint logic programming”. In: International Journal of Computer Mathematics 92.9 (Nov. 2014), p. 1956–1975. ISSN: 1029-0265. DOI: 10.1080/00207160.2014.975218. URL: http://dx.doi.org/10.1080/00207160.2014.975218.
[11] J. Pazos, A. Rodríguez-Patón, and A. Silva. “Solving SAT in Linear Time with a Neural-like Membrane System”. In: Computational Methods in Neural Modeling. Springer Berlin Heidelberg, 2003, p. 662–669. ISBN: 9783540448686. DOI: 10.1007/3-540-44868-3_84. URL: http://dx.doi.org/10.1007/3-540-44868-3_84.
[12] S. Schockaert, J. Janssen, and D. Vermeir. “Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains”. In: ACM Transactions on Computational Logic 13.4 (Oct. 2012), p. 1–39. ISSN: 1557-945X. DOI: 10.1145/2362355.2362361. URL: http://dx.doi.org/10.1145/2362355.2362361.
